Neuromorphic Recurrent Spiking Neural Networks for EMG Gesture Classification and Low Power Implementation on Loihi

被引:3
|
作者
Bezugam, Sai Sukruth [1 ]
Shaban, Ahmed [1 ]
Suri, Manan [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Elect Engn, New Delhi, India
关键词
Spiking Neural Network; Neuromorphic hardware; RSNN; LOIHI; EMG; Gesture Recognition;
D O I
10.1109/ISCAS46773.2023.10181510
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we show an efficient Electromyograph (EMG) gesture recognition using Double Exponential Adaptive Threshold (DEXAT) neuron based Recurrent Spiking Neural Network (RSNN). Our network achieves a classification accuracy of 90% while using lesser number of neurons compared to the best reported prior art on Roshambo EMG dataset. Further, to illustrate the benefits of dedicated neuromorphic hardware, we show hardware implementation of DEXAT neuron using multi-compartment methodology on Intel's neuromorphic Loihi chip. RSNN implementation on Loihi (Nahuku 32) achieves significant energy/latency benefits of similar to 983X/19X compared to GPU for batch size = 50.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Heartbeat Classification with Spiking Neural Networks on the Loihi Neuromorphic Processor
    Buettner, Kyle
    George, Alan D.
    2021 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI (ISVLSI 2021), 2021, : 138 - 143
  • [2] Neuromorphic Implementation of a Recurrent Neural Network for EMG Classification
    Ma, Yongqiang
    Donati, Elisa
    Chen, Badong
    Ren, Pengju
    Zheng, Nanning
    Indiveri, Giacomo
    2020 2ND IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2020), 2020, : 69 - 73
  • [3] Conversion of Artificial Recurrent Neural Networks to Spiking Neural Networks for Low-power Neuromorphic Hardware
    Diehl, Peter U.
    Zarrella, Guido
    Cassidy, Andrew
    Pedroni, Bruno U.
    Neftci, Emre
    2016 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC), 2016,
  • [4] LaneSNNs: Spiking Neural Networks for Lane Detection on the Loihi Neuromorphic Processor
    Viale, Alberto
    Marchisio, Alberto
    Martina, Maurizio
    Masera, Guido
    Shafique, Muhammad
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 79 - 86
  • [5] SPIKING NEURAL NETWORKS TRAINED WITH BACKPROPAGATION FOR LOW POWER NEUROMORPHIC IMPLEMENTATION OF VOICE ACTIVITY DETECTION
    Martinelli, Flavio
    Dellaferrera, Giorgia
    Mainar, Pablo
    Cernak, Milos
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8544 - 8548
  • [6] Assessment of Recurrent Spiking Neural Networks on Neuromorphic Accelerators for Naturalistic Texture Classification
    Ali, Haydar Al Haj
    Dabbous, Ali
    Ibrahim, Ali
    Valle, Maurizio
    2023 18TH CONFERENCE ON PH.D RESEARCH IN MICROELECTRONICS AND ELECTRONICS, PRIME, 2023, : 285 - 288
  • [7] Discrimination of EMG Signals Using a Neuromorphic Implementation of a Spiking Neural Network
    Donati, Elisa
    Payvand, Melika
    Risi, Nicoletta
    Krause, Renate
    Indiveri, Giacomo
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2019, 13 (05) : 795 - 803
  • [8] An FPGA Implementation of Deep Spiking Neural Networks for Low-Power and Fast Classification
    Ju, Xiping
    Fang, Biao
    Yan, Rui
    Xu, Xiaoliang
    Tang, Huajin
    NEURAL COMPUTATION, 2020, 32 (01) : 182 - 204
  • [9] Transductive Spiking Graph Neural Networks for Loihi
    Snyder, Shay
    Clerico, Victoria
    Cong, Guojing
    Kulkarni, Shruti
    Schuman, Catherine
    Risbud, Sumedh R.
    Parsa, Maryam
    PROCEEDING OF THE GREAT LAKES SYMPOSIUM ON VLSI 2024, GLSVLSI 2024, 2024, : 608 - 613
  • [10] Image Classification with Recurrent Spiking Neural Networks
    Cureno Ramirez, Andres
    Garcia Morgado, Balam
    Gerardo de la Fraga, Luis
    PATTERN RECOGNITION, MCPR 2024, 2024, 14755 : 368 - 376