Exact special solutions of space-time fractional Cahn-Allen equation by beta and M-truncated derivatives

被引:18
作者
Sadaf, Maasoomah [1 ]
Akram, Ghazala [1 ]
Inc, Mustafa [2 ,3 ]
Dawood, Mirfa [1 ]
Rezazadeh, Hadi [4 ]
Akgul, Ali [5 ,6 ]
机构
[1] Univ Punjab, Dept Math, Lahore 54590, Pakistan
[2] Firat Univ, Dept Math, Elazig, Turkiye
[3] China Med Univ Taichung, Dept Med Res, Taichung, Taiwan
[4] Amol Univ Special Modern Technol, Fac Engn Technol, Amol, Iran
[5] Siirt Univ, Art & Sci Fac, Dept Math, TR-56100 Siirt, Turkiye
[6] Saveetha Sch Engn, Dept Elect & Commun Engn, SIMATS, Chennai, Tamil Nadu, India
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2024年 / 38卷 / 08期
关键词
Beta derivative; M-truncated derivative; traveling wave solutions; FCAE; ITEM; CALCULUS; TRANSFORM; MODEL;
D O I
10.1142/S0217979224501182
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we consider the nonlinear space-time fractional form of Cahn-Allen equation (FCAE) with beta and M-truncated derivatives. Cahn-Allen equation (CAE) is commonly used in many problems of physics and engineering, such as, solidification problems, phase separation in iron alloys and others. We apply the improved tan(?(?)2)-expansion method (ITEM). We obtain four types of traveling wave solutions, including, trigonometric, hyperbolic, rational and exponential function solutions. We demonstrate some of the extracted solutions using definitions of the beta (BD) and M-truncated derivatives (MTD) to understand their dynamical behavior. We observe the fractional effects of the aforementioned derivatives on the related physical phenomena up to possible extent.
引用
收藏
页数:25
相关论文
共 50 条
[1]   An efficient technique for generalized conformable Pochhammer-Chree models of longitudinal wave propagation of elastic rod [J].
Akinyemi, Lanre ;
Veeresha, P. ;
Senol, Mehmet ;
Rezazadeh, Hadi .
INDIAN JOURNAL OF PHYSICS, 2022, 96 (14) :4209-4218
[2]  
Akram G, 2021, OPT QUANTUM ELECT, V53, P1
[3]   Extraction of new exact soliton solutions and Painleve-test for fractional Cahn-Allen equation [J].
Akram, Ghazala ;
Arshed, Saima ;
Sadaf, Maasoomah ;
Zainab .
OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (01)
[4]   Abundant soliton solutions for Radhakrishnan-Kundu-Laksmanan equation with Kerr law non-linearity by improved tan(Φ(ξ)/2)-expansion technique [J].
Akram, Ghazala ;
Sadaf, Maasoomah ;
Dawood, Mirfa .
OPTIK, 2021, 247
[5]   Optical solitons for Lakshmanan-Porsezian-Daniel equation with Kerr law non-linearity using improved tan(ψ(η)/2)-expansion technique [J].
Akram, Ghazala ;
Sadaf, Maasoomah ;
Dawood, Mirfa ;
Baleanu, Dumitru .
RESULTS IN PHYSICS, 2021, 29
[6]   Regarding on the Results for the Fractional Clannish Random Walker's Parabolic Equation and the Nonlinear Fractional Cahn-Allen Equation [J].
Alam, Md. Nur ;
Ilhan, Onur Alp ;
Uddin, Md. Sabur ;
Rahim, Md. Abdur .
ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
[7]   Solitary wave solutions to some nonlinear fractional evolution equations in mathematical physics [J].
Ali, H. M. Shahadat ;
Habib, M. A. ;
Miah, M. Mamun ;
Akbar, M. Ali .
HELIYON, 2020, 6 (04)
[8]   Fractional View Analysis of Cahn-Allen Equations by New Iterative Transform Method [J].
Ali, Liaqat ;
Shah, Rasool ;
Weera, Wajaree .
FRACTAL AND FRACTIONAL, 2022, 6 (06)
[9]   MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING [J].
ALLEN, SM ;
CAHN, JW .
ACTA METALLURGICA, 1979, 27 (06) :1085-1095
[10]   Properties of the Katugampola fractional derivative with potential application in quantum mechanics [J].
Anderson, Douglas R. ;
Ulness, Darin J. .
JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (06)