Local regularity for nonlinear elliptic and parabolic equations with anisotropic weights

被引:0
作者
Miao, Changxing [1 ,2 ]
Zhao, Zhiwen [3 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing, Peoples R China
[2] Inst Appl Phys & Computat Math, POB 8009, Beijing, Peoples R China
[3] Beijing Computat Sci Res Ctr, Beijing, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
local regularity; anisotropic weights; weighted Poincare inequality; weighted p-Laplace equations; weighted fast diffusion equations; HARNACK INEQUALITY; ISOPERIMETRIC-INEQUALITIES; INTERPOLATION INEQUALITIES; SOBOLEV; POINCARE; BEHAVIOR;
D O I
10.1017/S0013091523000202
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to capture the asymptotic behaviour for solutions to a class of nonlinear elliptic and parabolic equations with the anisotropic weights consisting of two power-type weights of different dimensions near the degenerate or singular point, especially covering the weighted p-Laplace equations and weighted fast diffusion equations. As a consequence, we also establish the local Holder estimates for their solutions in the presence of single power-type weights.
引用
收藏
页码:391 / 436
页数:46
相关论文
共 38 条
[2]  
[Anonymous], 1957, Mem. Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat.
[3]   A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics [J].
Badiale, M ;
Tarantello, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 163 (04) :259-293
[4]  
Bahouri H, 2006, ANN SCUOLA NORM-SCI, V5, P375
[5]  
BERRYMAN JG, 1980, ARCH RATION MECH AN, V74, P379, DOI 10.1007/BF00249681
[6]   Sharp Extinction Rates for Fast Diffusion Equations on Generic Bounded Domains [J].
Bonforte, Matteo ;
Figalli, Alessio .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2021, 74 (04) :744-789
[7]   Behaviour near extinction for the Fast Diffusion Equation on bounded domains [J].
Bonforte, Matteo ;
Grillo, Gabriele ;
Vazquez, Juan Luis .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (01) :1-38
[8]   Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations [J].
Bonforte, Matteo ;
Luis Vazquez, Juan .
ADVANCES IN MATHEMATICS, 2010, 223 (02) :529-578
[9]   Sharp isoperimetric inequalities via the ABP [J].
Cabre, Xavier ;
Ros-Oton, Xavier ;
Serra, Joaquim .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2016, 18 (12) :2971-2998
[10]   Sobolev and isoperimetric inequalities with monomial weights [J].
Cabre, Xavier ;
Ros-Oton, Xavier .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (11) :4312-4336