Presentations for wreath products involving symmetric inverse monoids and categories

被引:5
作者
Clark, Chad [1 ]
East, James [1 ]
机构
[1] Western Sydney Univ, Ctr Res Math & Data Sci, Locked Bag 1797, Penrith, NSW 2751, Australia
基金
澳大利亚研究理事会;
关键词
Presentations; Wreath products; Symmetric inverse; monoids; semigroups; categories; REPRESENTATION-THEORY; PARTITION MONOIDS; FINITE GENERATION; SEMIGROUP; ALGEBRAS;
D O I
10.1016/j.jalgebra.2022.12.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Wreath products involving symmetric inverse monoids/semi-groups/categories arise in many areas of algebra and science, and presentations by generators and relations are crucial tools in such studies. The current paper finds such presentations for M l In, M l Sing(In) and M l I. Here M is an arbitrary monoid, In is the symmetric inverse monoid, Sing(In) its sin-gular ideal, and I is the symmetric inverse category. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:630 / 668
页数:39
相关论文
共 52 条
[1]  
Abramsky Samson., 2008, MATH QUANTUM COMPUTA, P515
[2]  
AIZENSTAT A, 1962, SIB MAT ZH, V3, P161
[3]  
Aizenstat A. Y., 1958, MAT SBORNIK, V45, P261
[4]   Kauffman monoids [J].
Borisavljevic, M ;
Dosen, K ;
Petric, Z .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2002, 11 (02) :127-143
[5]   On algebras which are connected with the semisimple continuous groups [J].
Brauer, R .
ANNALS OF MATHEMATICS, 1937, 38 :857-872
[6]   Congruences on the partial automorphism monoid of a free group action [J].
Brookes, Matthew D. G. K. .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2021, 31 (06) :1147-1176
[7]  
Carson S, 2023, Arxiv, DOI arXiv:2204.13833
[8]  
Clark C., 2022, SORTING CIRCUL UNPUB
[9]  
Clifford A.H., 1961, ALGEBRAIC THEORY SEM, V7
[10]   Cyclotomic q-Schur algebras [J].
Dipper, R ;
James, G ;
Mathas, A .
MATHEMATISCHE ZEITSCHRIFT, 1998, 229 (03) :385-416