A-DAVIS-WIELANDT-BEREZIN RADIUS INEQUALITIES

被引:8
作者
Gurdal, Verda [1 ]
Huban, Mualla Birgul [2 ]
机构
[1] Suleyman Demirel Univ, Dept Math, TR-32260 Isparta, Turkiye
[2] Isparta Univ Appl Sci, ?, Isparta, Turkiye
来源
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS | 2023年 / 72卷 / 01期
关键词
Berezin symbol; A-Davis-Wielandt-Berezin radius; A-Berezin number; A-Berezin norm; semi inner product; reproducing kernel Hilbert spaces; SHELL;
D O I
10.31801/cfsuasmas.1107024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider operator V on the reproducing kernel Hilbert space 7-l = 7-l (ohm) over some set ohm with the reproducing kernel KH,lambda (z) = K (z, lambda) and define A-Davis-Wielandt-Berezin radius eta A (V ) by the formula [GRAPHICS] and V is the Berezin symbol of V where any positive operator A-induces a semi-inner product on 7-l is defined by (x, y)A = (Ax, y) for x, y E 7-l. We study equality of the lower bounds for A-Davis-Wielandt-Berezin radius mentioned above. We establish some lower and upper bounds for the A-Davis-Wielandt-Berezin radius of reproducing kernel Hilbert space operators. In addition, we get an upper bound for the A-Davis-Wielandt-Berezin radius of sum of two bounded linear operators.
引用
收藏
页码:182 / 198
页数:17
相关论文
共 28 条
[1]   Metric properties of projections in semi-Hilbertian spaces [J].
Arias, M. Laura ;
Corach, Gustavo ;
Gonzalez, M. Celeste .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 62 (01) :11-28
[2]   Partial isometries in semi-Hilbertian spaces [J].
Arias, M. Laura ;
Corach, Gustavo ;
Gonzalez, M. Celeste .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) :1460-1475
[3]   Berezin number inequalities for operators [J].
Bakherad, Mojtaba ;
Garayev, Mubariz T. .
CONCRETE OPERATORS, 2019, 6 (01) :33-43
[4]   Some operator inequalities associated with Kantorovich and Holder-McCarthy inequalities and their applications [J].
Basaran, Hamdullah ;
Gurdal, Mehmet ;
Guncan, Aye Nur .
TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (01) :523-532
[5]  
Berezin F.A., 1972, MATH USSR IZV, V6, P1117, DOI [10.1070/IM1972v006n05ABEH001913, DOI 10.1070/IM1972V006N05ABEH001913]
[6]  
Bhanja A, 2020, Arxiv, DOI [arXiv:2006.05069, 10.48550/arXiv.2006.05069, DOI 10.48550/ARXIV.2006.05069]
[7]   Bounds for the Davis-Wielandt radius of bounded linear operators [J].
Bhunia, Pintu ;
Bhanja, Aniket ;
Bag, Santanu ;
Paul, Kallol .
ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (01)
[8]  
Buzano ML, 1971, REND SEM MAT U POLIT, V31, P405
[9]   Davis-Wielandt shell and q-numerical range [J].
Chien, MT ;
Nakazato, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 340 :15-31
[10]  
DAVIS C, 1968, ACTA SCI MATH, V29, P69