Highly Efficient and Stable 2D/3D Heterojunction Perovskite Solar Cells by In Situ Interface Modification with [(p-Fluorophenyl)ethyl]ammonium Acetate

被引:7
|
作者
Xiong, Yan [1 ]
Li, Min [1 ]
Peng, Liping [2 ]
Thant, Aye Aye [3 ]
Wang, Nannan [4 ]
Zhu, Yanqiu [4 ]
Xu, Ling [1 ]
机构
[1] Huazhong Univ Sci & Technol, Wenzhou Adv Mfg Technol Res Inst, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Huanggang Normal Univ, Sch Phys & Telecommun, Huangzhou 438000, Peoples R China
[3] Univ Yangon, Dept Phys, Yangon 11041, Myanmar
[4] Guangxi Univ, Guangxi Inst Fullerene Technol, Key Lab New Proc Technol Nonferrous Met & Mat Envi, Nanning 530004, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
(p-?uorophenyl)ethyl]ammonium acetate; perovskite solar cells; 2D; 3D heterojunction; stability; interface modification; SUPPRESSED ION MIGRATION;
D O I
10.1021/acsami.2c22212
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
2D/3D heterojunction perovskites, meaning a rationally prepared 2D capping layer on 3D perovskite films, have been demonstrated as an effective avenue for simultaneously enhancing the efficiency and stability in perovskite solar cells (PSCs). However, the mechanism of the 2D perovskite induced by organic agents is still not extensively studied. Here, we report 2D/3D heterojunction PSCs by in situ fabricating a 2D modified layer on 3D perovskite films with [(p-fluorophenyl)ethyl]ammonium acetate (FPEAAc). During the annealing process, FPEAAc melts and uniformly covers the 3D perovskite films. Then, the excess acetate salt is volatilized, eventually forming a compact 2D perovskite thin layer. On the one hand, the organic agents can effectively rivet onto the 3D perovskite surface, ensuring formation of the necessary 2D perovskites with hydrophobic FPEA+ ions. On the other hand, the reaction generates some PbI2, which passivates the defects on 3D perovskite films and improves the interface contact, significantly enhancing the open-circuit voltage (VOC) and fill factor (FF) in 2D/3D PSCs. The highest power conversion efficiency of 22.53% is achieved compared with 20.16% in 3D PSCs. The 2D/3D-heterojunction-structured PSCs modified by FPEAAc exhibit high stability, retaining about 90% of the initial device efficiency after 500 h at 85 degrees C and 40 +/- 5% relative humidity. Our research provides a simple method to control the 2D perovskite layer formation and effectively enhance the performance and stability in 2D/ 3D heterojunction perovskite cells.
引用
收藏
页码:15420 / 15428
页数:9
相关论文
共 50 条
  • [11] In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells
    Chen, Peng
    Bai, Yang
    Wang, Songcan
    Lyu, Miaoqiang
    Yun, Jung-Ho
    Wang, Lianzhou
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (17)
  • [12] Performance analysis of highly efficient 2D/3D bilayer inverted perovskite solar cells
    Chakrabartty, Joyprokash
    Islam, Md. Aminul
    Reza, Sahariar
    SOLAR ENERGY, 2021, 230 (230) : 195 - 207
  • [13] Improved mixed-dimensional 3D/2D perovskite layer with formamidinium bromide salt for highly efficient and stable perovskite solar cells
    Mohammed, Mustafa K. A.
    Shalan, Ahmed Esmail
    Dehghanipour, M.
    Mohseni, H. R.
    CHEMICAL ENGINEERING JOURNAL, 2022, 428
  • [14] In Situ 2D Perovskite Formation and the Impact of the 2D/3D Structures on Performance and Stability of Perovskite Solar Cells
    de Holanda, Matheus S.
    Szostak, Rodrigo
    Marchezi, Paulo E.
    Duarte, Luis G. T. A.
    Germino, Jose C.
    Atvars, Teresa D. Z.
    Nogueira, Ana F.
    SOLAR RRL, 2019, 3 (09):
  • [15] One-Year stable perovskite solar cells by 2D/3D interface engineering
    Grancini, G.
    Roldan-Carmona, C.
    Zimmermann, I.
    Mosconi, E.
    Lee, X.
    Martineau, D.
    Narbey, S.
    Oswald, F.
    De Angelis, F.
    Graetzel, M.
    Nazeeruddin, Mohammad Khaja
    NATURE COMMUNICATIONS, 2017, 8
  • [16] Self-healing 2D/3D perovskite for efficient and stable p-i-n perovskite solar cells
    Irannejad, Neda
    Rezaei, Behzad
    Ensafi, Ali Asghar
    CHEMOSPHERE, 2023, 311
  • [17] Highly efficient and stable 2D/3D perovskite solar cells based on surface reconstruction and energy level alignment
    Li, Qiaohui
    Liu, Hang
    Zhou, Tong
    SCIENCE CHINA-CHEMISTRY, 2024, 67 (09) : 3083 - 3090
  • [18] Hydrophobic long alkyl chain organic cations induced 2D/3D heterojunction for efficient and stable perovskite solar cells
    He, Xiang
    Wang, Min
    Cao, Fengren
    Tian, Wei
    Li, Liang
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 124 : 243 - 251
  • [19] Engineering Spacer Conjugation for Efficient and Stable 2D/3D Perovskite Solar Cells and Modules
    Zhang, Jinping
    Chu, Liangli
    Liu, Tianjun
    Tian, Bingkun
    Chu, Weicun
    Sun, Xiangnan
    Nie, Riming
    Zhang, Wei
    Zhang, Zhuhua
    Zhao, Xiaoming
    Guo, Wanlin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (01)
  • [20] Precise modulation strategies of 2D/3D perovskite heterojunctions in efficient and stable solar cells
    Zhou, Qian
    Liu, Baibai
    Shai, Xuxia
    Li, Yuelong
    He, Peng
    Yu, Hua
    Chen, Cong
    Xu, Zong-Xiang
    Wei, Dong
    Chen, Jiangzhao
    CHEMICAL COMMUNICATIONS, 2023, 59 (28) : 4128 - 4141