Runge-Kutta-Nystrom Pairs of Orders 8(6) for Use in Quadruple Precision Computations

被引:2
作者
Kovalnogov, Vladislav N. [1 ]
Matveev, Alexander F. [1 ]
Generalov, Dmitry A. [1 ]
Karpukhina, Tamara V. [1 ]
Simos, Theodore E. [1 ,2 ,3 ,4 ,5 ]
Tsitouras, Charalampos [6 ]
机构
[1] Ulyanovsk State Tech Univ, Lab Interdisciplinary Problems Energy Prod, 32 Severny Venetz St, Ulyanovsk 432027, Russia
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Neijiang Normal Univ, Data Recovery Key Lab Sichuan Prov, Neijiang 641100, Peoples R China
[4] Univ Western Macedonia, Dept Math, Kastoria 52100, Greece
[5] Democritus Univ Thrace, Dept Civil Engn, Sect Math, Xanthi 67100, Greece
[6] Natl & Kapodistrian Univ Athens, Gen Dept, Euripus Campus, Psachna 34400, Greece
关键词
initial value problem; second order; Runge-Kutta-Nystrom;
D O I
10.3390/math11040891
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The second-order system of non-stiff Initial Value Problems (IVP) is considered and, in particular, the case where the first derivatives are absent. This kind of problem is interesting since since it arises in many significant problems, e.g., in Celestial mechanics. Runge-Kutta-Nystrom (RKN) pairs are perhaps the most successful approaches for solving such type of IVPs. To achieve a pair attaining orders eight and six, we have to solve a well-defined set of equations with respect to the coefficients. Here, we provide a simplified form of these equations in a robust algorithm. When creating such pairings for use in double precision arithmetic, numerous conditions are often satisfied. First and foremost, we strive to keep the coefficients' magnitudes small to prevent accuracy loss. We may, however, allow greater coefficients when working with quadruple precision. Then, we may build pairs of orders eight and six with significantly smaller truncation errors. In this paper, a novel pair is generated that, as predicted, outperforms state-of-the-art pairs of the same orders in a collection of important problems.
引用
收藏
页数:13
相关论文
共 22 条
  • [1] [Anonymous], 2010, Matlab. version 7.10.0 (r2010a)
  • [2] A RUNGE-KUTTA-NYSTROM CODE
    BRANKIN, RW
    GLADWELL, I
    DORMAND, JR
    PRINCE, PJ
    SEWARD, WL
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1989, 15 (01): : 31 - 40
  • [3] Butcher J. C., 1964, J AUSTRALIAN MATH SO, V4, P179, DOI [10.1017/S1446788700023387, DOI 10.1017/S1446788700023387]
  • [4] HIGH-ORDER SYMPLECTIC RUNGE-KUTTA-NYSTROM METHODS
    CALVO, MP
    SANZSERNA, JM
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (05) : 1237 - 1252
  • [5] FAMILIES OF RUNGE-KUTTA-NYSTROM FORMULAS
    DORMAND, JR
    ELMIKKAWY, MEA
    PRINCE, PJ
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (02) : 235 - 250
  • [6] HIGH-ORDER EMBEDDED RUNGE-KUTTA-NYSTROM FORMULAS
    DORMAND, JR
    ELMIKKAWY, MEA
    PRINCE, PJ
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (04) : 423 - 430
  • [7] A new optimized non-FSAL embedded Runge-Kutta-Nystrom algorithm of orders 6 and 4 in six stages
    El-Mikkawy, M
    Rahmo, ED
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2003, 145 (01) : 33 - 43
  • [8] 2 FORTRAN PACKAGES FOR ASSESSING INITIAL-VALUE METHODS
    ENRIGHT, WH
    PRYCE, JD
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1987, 13 (01): : 1 - 27
  • [9] A 9TH ORDER RUNGE-KUTTA-NYSTROM FORMULA WITH STEPSIZE CONTROL FOR THE DIFFERENTIAL-EQUATIONS X-UMLAUT=F(T,X)
    FEHLBERG, E
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1981, 61 (10): : 477 - 485
  • [10] HAIRER E, 1977, NUMER MATH, V27, P283, DOI 10.1007/BF01396178