Tantalum oxide nanosheets/polypropylene composite separator constructing lithium-ion channels for stable lithium metal batteries

被引:29
作者
Chen, Long [1 ,2 ]
Lin, Xiaohui [3 ]
Dang, Weiqi [4 ]
Huang, Hao [5 ]
Liu, Guoxia [1 ]
Yang, Zhenyu [1 ]
机构
[1] Qingdao Univ, Sch Elect & Informat Engn, Qingdao 266071, Peoples R China
[2] Cent South Univ, Sch Mat Sci & Engn, Key Lab Elect Packaging & Adv Funct Mat Hunan Prov, Changsha 410083, Peoples R China
[3] Hunan Univ, Coll Chem & Chem Engn, Hunan Key Lab Two Dimens Mat, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Peoples R China
[4] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[5] Guangxi Univ, MOE Key Lab New Proc Technol Nonferrous Met & Mat, Guangxi Key Lab Proc Nonferrous Met & Featured Mat, Nanning 530004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Composite separator; Oxide nanosheet; Li-ion channel; Lithium metal anode; ELECTRODE; GROWTH; ANODE;
D O I
10.1007/s42114-022-00589-x
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Developing next-generation high-energy-density rechargeable batteries is pivotal to solve the growing demand for sustainable energy. Lithium metal battery (LMB) is the representative in post-lithium-ion battery era. However, uncontrollable growth of Li dendrites and low Coulombic efficiency (CE) prevent it from practical applications in LMBs. Here, a multifunctional tantalum oxide nanosheets/polypropylene (TaO3@PP) composite separator is developed to regulating ion transport in atomic scale. The TaO3 coating can improve the wettability and thermal stability of the PP separator. The openings of the nanomesh structure provide Li+ channels to allow efficient lithium-ion transport. The electrostatic attraction force between TaO3 nanosheets and Li+ and the electrostatic repulsion force between TaO3 nanosheets and anions ensuring the fast Li+ diffusion and low concentration polarization. The TaO3@PP separator can regulate Li+ distribution and promote uniform lithium deposition, inhibiting the Li dendrite growth. Thus, the composite separator achieves a high Li-ion transference number of 0.72. The LiFePO4||Li cell with the composite separator delivers high discharge capacity of 145 mAh g(-1) over 500 cycles at 0.5 C.
引用
收藏
页数:9
相关论文
共 44 条
[31]   Atomic-scale regulation of anionic and cationic migration in alkali metal batteries [J].
Xiong, Pan ;
Zhang, Fan ;
Zhang, Xiuyun ;
Liu, Yifan ;
Wu, Yunyan ;
Wang, Shijian ;
Safaei, Javad ;
Sun, Bing ;
Ma, Renzhi ;
Liu, Zongwen ;
Bando, Yoshio ;
Sasaki, Takayoshi ;
Wang, Xin ;
Zhu, Junwu ;
Wang, Guoxiu .
NATURE COMMUNICATIONS, 2021, 12 (01)
[32]   The Formation/Decomposition Equilibrium of LiH and its Contribution on Anode Failure in Practical Lithium Metal Batteries [J].
Xu, Gaojie ;
Li, Jiedong ;
Wang, Chao ;
Du, Xiaofan ;
Lu, Di ;
Xie, Bin ;
Wang, Xiao ;
Lu, Chenglong ;
Liu, Haisheng ;
Dong, Shanmu ;
Cui, Guanglei ;
Chen, Liquan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (14) :7770-7776
[33]   A Lithium-Metal Anode with Ultra-High Areal Capacity (50 mAh cm-2) by Gridding Lithium Plating/Stripping [J].
Xu, Pan ;
Hu, Xinyu ;
Liu, Xiaoyu ;
Lin, Xiaodong ;
Fan, Xiaoxiang ;
Cui, Xueyang ;
Sun, Cui ;
Wu, Qihui ;
Lian, Xiaobing ;
Yuan, Ruming ;
Zheng, Mingsen ;
Dong, Quanfeng .
ENERGY STORAGE MATERIALS, 2021, 38 :190-199
[34]   Tantalum oxide nanomesh as self-standing one nanometre thick electrolyte [J].
Xu, Xiaoxiong ;
Takada, Kazunori ;
Fukuda, Katsutoshi ;
Ohnishi, Tsuyoshi ;
Akatsuka, Kosho ;
Osada, Minoru ;
Bui Thi Hang ;
Kumagai, Kazuhiro ;
Sekiguchi, Takashi ;
Sasaki, Takayoshi .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3509-3512
[35]   Ultrathin Defective C-N Coating to Enable Nanostructured Li Plating for Li Metal Batteries [J].
Yang, Qifan ;
Cui, Mengnan ;
Hu, Jiulin ;
Chu, Fulu ;
Zheng, Yongjian ;
Liu, Jianjun ;
Li, Chilin .
ACS NANO, 2020, 14 (02) :1866-1878
[36]   Efficient Activation of Li2S by Transition Metal Phosphides Nanoparticles for Highly Stable Lithium-Sulfur Batteries [J].
Yuan, Huadong ;
Chen, Xianlang ;
Zhou, Guangmin ;
Zhang, Wenkui ;
Luo, Jianmin ;
Huang, Hui ;
Gan, Yongping ;
Liang, Chu ;
Xia, Yang ;
Zhang, Jun ;
Wang, Jianguo ;
Tao, Xinyong .
ACS ENERGY LETTERS, 2017, 2 (07) :1711-1719
[37]   Novel S-doped ordered mesoporous carbon nanospheres toward advanced lithium metal anodes [J].
Zhang, Fei ;
Liu, Xiaoyan ;
Yang, Menghua ;
Cao, Xiaoqing ;
Huang, Xingyu ;
Tian, Yue ;
Zhang, Fang ;
Li, Hexing .
NANO ENERGY, 2020, 69
[38]   Amorphizing metal-organic framework towards multifunctional polysulfide barrier for high-performance lithium-sulfur batteries [J].
Zhang, Xiaomin ;
Li, Gaoran ;
Zhang, Yongguang ;
Luo, Dan ;
Yu, Aiping ;
Wang, Xin ;
Chen, Zhongwei .
NANO ENERGY, 2021, 86
[39]   Sandwich-like CoMoP2/MoP heterostructures coupling N, P co-doped carbon nanosheets as advanced anodes for high-performance lithium-ion batteries [J].
Zhang, Yiming ;
Liu, Liyuan ;
Zhao, Lanling ;
Hou, Chuanxin ;
Huang, Meina ;
Algadi, Hassan ;
Li, Deyuan ;
Xia, Qing ;
Wang, Jun ;
Zhou, Zhaorui ;
Han, Xue ;
Long, Yuxin ;
Li, Yebing ;
Zhang, Zidong ;
Liu, Yao .
ADVANCED COMPOSITES AND HYBRID MATERIALS, 2022, 5 (03) :2601-2610
[40]   Separator engineering toward practical Li-S batteries: Targeted electrocatalytic sulfur conversion, lithium plating regulation, and thermal tolerance [J].
Zhao, Qiannan ;
Wang, Ronghua ;
Wen, Jie ;
Hu, Xiaolin ;
Li, Zongyang ;
Li, Menghong ;
Pan, Fusheng ;
Xu, Chaohe .
NANO ENERGY, 2022, 95