A Case-Control Clinical Trial on a Deep Learning-Based Classification System for Diagnosis of Amyloid-Positive Alzheimer's Disease

被引:2
作者
Bae, Jong Bin [1 ,2 ]
Lee, Subin [3 ]
Oh, Hyunwoo [4 ]
Sung, Jinkyeong [4 ]
Lee, Dongsoo [4 ]
Han, Ji Won [1 ,2 ]
Kim, Jun Sung [1 ,5 ]
Kim, Jae Hyoung [6 ]
Kim, Sang Eun [7 ,8 ]
Kim, Ki Woong [1 ,2 ,3 ]
机构
[1] Seoul Natl Univ, Dept Neuropsychiat, Bundang Hosp, 82 Gumi Ro 173beon Gil, Seongnam 13620, South Korea
[2] Seoul Natl Univ, Dept Psychiat, Coll Med, Seoul, South Korea
[3] Seoul Natl Univ, Dept Brain & Cognit Sci, Coll Nat Sci, Seoul, South Korea
[4] VUNO Inc, Seoul, South Korea
[5] Seoul Natl Univ, Inst Human Behav Med, Med Res Ctr, Seoul, South Korea
[6] Seoul Natl Univ, Dept Radiol, Bundang Hosp, Seongnam, South Korea
[7] Seoul Natl Univ, Dept Nucl Med, Bundang Hosp, Seongnam, South Korea
[8] Adv Inst Convergence Technol, Ctr Nanomol Imaging & Innovat Drug Dev, Suwon, South Korea
关键词
Alzheimer disease; Magnetic resonance imaging; Clinical trial; Deep learning; MILD COGNITIVE IMPAIRMENT; NATIONAL INSTITUTE; ASSOCIATION WORKGROUPS; DEMENTIA; GUIDELINES; RECOMMENDATIONS; PREVALENCE;
D O I
10.30773/pi.2023.0052
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Objective A deep learning-based classification system (DLCS) which uses structural brain magnetic resonance imaging (MRI) to diagnose Alzheimer's disease (AD) was developed in a previous recent study. Here, we evaluate its performance by conducting a single-center, case-control clinical trial. Methods We retrospectively collected T1-weighted brain MRI scans of subjects who had an accompanying measure of amyloid-beta (A ss) positivity based on a 18F-florbetaben positron emission tomography scan. The dataset included 188 A ss-positive patients with mild cognitive impairment or dementia due to AD, and 162 A ss-negative controls with normal cognition. We calculated the sensitivity, specificity, positive predictive value, negative predictive value, and area under the receiver operating characteristic curve (AUC) of the DLCS in the classification of A ss-positive AD patients from A ss-negative controls. Results The DLCS showed excellent performance, with sensitivity, specificity, positive predictive value, negative predictive value, and AUC of 85.6% (95% confidence interval [CI], 79.8-90.0), 90.1% (95% CI, 84.5-94.2), 91.0% (95% CI, 86.3-94.1), 84.4% (95% CI, 79.288.5), and 0.937 (95% CI, 0.911-0.963), respectively. Conclusion The DLCS shows promise in clinical settings where it could be routinely applied to MRI scans regardless of original scan purpose to improve the early detection of AD.
引用
收藏
页码:1195 / 1203
页数:9
相关论文
共 37 条
[1]   The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease [J].
Albert, Marilyn S. ;
DeKosky, Steven T. ;
Dickson, Dennis ;
Dubois, Bruno ;
Feldman, Howard H. ;
Fox, Nick C. ;
Gamst, Anthony ;
Holtzman, David M. ;
Jagust, William J. ;
Petersen, Ronald C. ;
Snyder, Peter J. ;
Carrillo, Maria C. ;
Thies, Bill ;
Phelps, Creighton H. .
ALZHEIMERS & DEMENTIA, 2011, 7 (03) :270-279
[2]  
Alzheimers Assoc, 1998, NEUROBIOL AGING, V19, P109
[3]   Identification of Alzheimer's disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging [J].
Bae, Jong Bin ;
Lee, Subin ;
Jung, Wonmo ;
Park, Sejin ;
Kim, Weonjin ;
Oh, Hyunwoo ;
Han, Ji Won ;
Kim, Grace Eun ;
Kim, Jun Sung ;
Kim, Jae Hyoung ;
Kim, Ki Woong .
SCIENTIFIC REPORTS, 2020, 10 (01)
[4]   Automated classification of Alzheimer's disease and mild cognitive impairment using a single MRI and deep neural networks [J].
Basaia, Silvia ;
Agosta, Federica ;
Wagner, Luca ;
Canu, Elisa ;
Magnani, Giuseppe ;
Santangelo, Roberto ;
Filippi, Massimo .
NEUROIMAGE-CLINICAL, 2019, 21
[5]   Accuracy of the Clinical Diagnosis of Alzheimer Disease at National Institute on Aging Alzheimer Disease Centers, 2005-2010 [J].
Beach, Thomas G. ;
Monsell, Sarah E. ;
Phillips, Leslie E. ;
Kukull, Walter .
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2012, 71 (04) :266-273
[6]   The use of biomarkers for the etiologic diagnosis of MCI in Europe: An EADC survey [J].
Bocchetta, Martina ;
Galluzzi, Samantha ;
Kehoe, Patrick Gavin ;
Aguera, Eduardo ;
Bernabei, Roberto ;
Bullock, Roger ;
Ceccaldi, Mathieu ;
Dartigues, Jean-Francois ;
de Mendonca, Alexandre ;
Didic, Mira ;
Eriksdotter, Maria ;
Felician, Olivier ;
Froelich, Lutz ;
Gertz, Hermann-Josef ;
Hallikainen, Merja ;
Hasselbalch, Steen G. ;
Hausner, Lucrezia ;
Heuser, Isabell ;
Jessen, Frank ;
Jones, Roy W. ;
Kurz, Alexander ;
Lawlor, Brian ;
Lleo, Alberto ;
Martinez-Lage, Pablo ;
Mecocci, Patrizia ;
Mehrabian, Shima ;
Monsch, Andreas ;
Nobili, Flavio ;
Nordberg, Agneta ;
Rikkert, Marcel Olde ;
Orgogozo, Jean-Marc ;
Pasquier, Florence ;
Peters, Oliver ;
Salmon, Eric ;
Sanchez-Castellano, Carmen ;
Santana, Isabel ;
Sarazin, Marie ;
Traykov, Latchezar ;
Tsolaki, Magda ;
Visser, Pieter Jelle ;
Wallin, Asa K. ;
Wilcock, Gordon ;
Wilkinson, David ;
Wolf, Henrike ;
Yener, Goersev ;
Zekry, Dina ;
Frisoni, Giovanni B. .
ALZHEIMERS & DEMENTIA, 2015, 11 (02) :195-206
[7]   The use of confidence or fiducial limits illustrated in the case of the binomial. [J].
Clopper, CJ ;
Pearson, ES .
BIOMETRIKA, 1934, 26 :404-413
[8]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[9]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[10]   The Cortical Signature of Alzheimer's Disease: Regionally Specific Cortical Thinning Relates to Symptom Severity in Very Mild to Mild AD Dementia and is Detectable in Asymptomatic Amyloid-Positive Individuals [J].
Dickerson, Bradford C. ;
Bakkour, Akram ;
Salat, David H. ;
Feczko, Eric ;
Pacheco, Jenni ;
Greve, Douglas N. ;
Grodstein, Fran ;
Wright, Christopher I. ;
Blacker, Deborah ;
Rosas, H. Diana ;
Sperling, Reisa A. ;
Atri, Alireza ;
Growdon, John H. ;
Hyman, Bradley T. ;
Morris, John C. ;
Fischl, Bruce ;
Buckner, Randy L. .
CEREBRAL CORTEX, 2009, 19 (03) :497-510