Influence of Heating Modes on Heat-Resistance of Zr and Zr-1% Nb Alloy

被引:0
|
作者
Trush, V. S. [1 ]
Pohrelyuk, I. M. [1 ]
Luk'yanenko, O. G. [1 ]
Kravchyshyn, T. M. [1 ]
Fedirko, V. M. [1 ]
机构
[1] Natl Acad Sci Ukraine, Karpenko Physicomech Inst, Lvov, Ukraine
关键词
zirconium; heat-resistance; oxidation resistance; activation energy; hardness;
D O I
10.1007/s11003-024-00754-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Differences in the oxidation kinetics of zirconium and Zr-1% Nb alloy during heating in air depending on the heating rate, temperature and exposure time are revealed. The increase in the heating rate from 2.5 to 6 and 7.5 degrees C/min reduces the activation energy of the Zr oxidation process in the temperature range of 20-1000 degrees C from 70.2 to 67 and 52.7 kJ/mol, respectively. For the Zr-1% Nb zirconium alloy, increase in the heating rate from 5 to 10 and 20 degrees C/min causes an increase in the activation energy of the oxidation process from 65 to 70.1 and 78.5 kJ/mol, respectively. Such an increase in the heating rate (of zirconium from 2.5 to 7.5 degrees C/min, and of the Zr-1% Nb alloy from 5 to 20 degrees C/min) causes a decrease in the thickness of the ZrO2 oxide film. During isothermal exposure for 5 h at 750 degrees C, Zr-1% Nb alloy and Zr at a temperature of 800 degrees C are oxidized according to the parabolic law. At 800 degrees C Zr-1% Nb alloy oxidizes according to the combined law: first, parabolic, and then quasi-linear.
引用
收藏
页码:138 / 144
页数:7
相关论文
共 50 条
  • [41] Numerical investigation of temperature distribution and melt pool geometry in laser beam welding of a Zr-1% Nb alloy nuclear fuel rod end cap
    Satyanarayana, G.
    Narayana, K. L.
    Rao, B. Nageswara
    BULLETIN OF MATERIALS SCIENCE, 2019, 42 (04)
  • [42] Influence of the manufacturing processes on the corrosion of Zr-1.1Nb-0.05Cu alloy
    Kim, Hyun-Gil
    Choi, Byung-Kwan
    Park, Jeong-Yong
    Jeong, Yong-Hwan
    CORROSION SCIENCE, 2009, 51 (10) : 2400 - 2405
  • [43] Constitutive Analysis of Zr-1Nb Alloy for Different Phase Regions
    Saxena, K. K.
    Chetan, K.
    Vaibhav, K.
    Krishna, K. V. Mani
    Pancholi, V
    Jha, S. K.
    Srivastava, D.
    MATERIALS PERFORMANCE AND CHARACTERIZATION, 2019, 8 (05) : 821 - 832
  • [44] Oxidation of Zirconium and Zr + 1% Nb Alloy in Air under Nonstationary Conditions
    A. T. Pichugin
    O. H. Luk'yanenko
    V. M. Azhazha
    Materials Science, 2000, 36 : 683 - 688
  • [45] Evaluation of the corrosion and oxide microstructural characteristics of pure zr and the Zr-1.5Nb alloy
    Kim, Hyun-Gil
    Jeong, Yong-Hwan
    METALS AND MATERIALS INTERNATIONAL, 2008, 14 (01) : 83 - 89
  • [46] Hydrogen absorption by Ti-implanted Zr-1Nb alloy
    Kashkarov, E. B.
    Nikitenkov, N. N.
    Sutygina, A. N.
    Obrosov, A.
    Manakhov, A.
    Polcak, J.
    Weiss, S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (04) : 2484 - 2491
  • [47] Evaluation of the corrosion and oxide microstructural characteristics of pure Zr and the Zr−1.5Nb alloy
    Hyun-Gil Kim
    Yong-Hwan Jeong
    Metals and Materials International, 2008, 14 : 83 - 89
  • [48] INHERITANCE OF STRUCTURE AND TEXTURE IN ALLOY Zr-2.5% Nb
    Yarkov, V. Yu
    Pastukhov, V., I
    Averin, S. A.
    Ladeishchikov, K. M.
    Tsuprun, Yu, I
    METAL SCIENCE AND HEAT TREATMENT, 2022, 64 (7-8) : 397 - 402
  • [49] High-intensity chromium ion implantation into Zr-1Nb alloy
    Ryabchikov, A. I.
    Kashkarov, E. B.
    Shevelev, A. E.
    Syrtanov, M. S.
    SURFACE & COATINGS TECHNOLOGY, 2020, 383 (383)
  • [50] Hydrogen calibration of GD-spectrometer using Zr-1Nb alloy
    Mikhaylov, Andrey A.
    Priamushko, Tatiana S.
    Babikhina, Maria N.
    Kudiiarov, Victor N.
    Heller, Rene
    Laptev, Roman S.
    Lider, Andrey M.
    APPLIED SURFACE SCIENCE, 2018, 432 : 85 - 89