First-Principles Calculations of Excited-State Decay Rate Constants in Organic Fluorophores

被引:31
作者
do Casal, Mariana T. [1 ]
Veys, Koen [1 ]
Bousquet, Manon H. E. [2 ]
Escudero, Daniel [1 ]
Jacquemin, Denis [2 ,3 ]
机构
[1] Katholieke Univ Leuven, Dept Chem, Phys Chem & Quantum Chem Div, B-3001 Leuven, Belgium
[2] Nantes Univ, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
[3] Inst Univ France IUF, FR-75005 Paris, France
关键词
LIGHT-EMITTING-DIODES; SPIN-ORBIT; TD-DFT; ELECTRON-TRANSFER; PHOTOPHYSICAL BEHAVIOR; VIBRATIONAL STRUCTURE; FLUORESCENCE YIELDS; HERZBERG-TELLER; LARGE MOLECULES; FRANCK-CONDON;
D O I
10.1021/acs.jpca.3c06191
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this Perspective, we discuss recent advances made to evaluate from first-principles the excited-state decay rate constants of organic fluorophores, focusing on the so-called static strategy. In this strategy, one essentially takes advantage of Fermi's golden rule (FGR) to evaluate rate constants at key points of the potential energy surfaces, a procedure that can be refined in a variety of ways. In this way, the radiative rate constant can be straightforwardly obtained by integrating the fluorescence line shape, itself determined from vibronic calculations. Likewise, FGR allows for a consistent calculation of the internal conversion (related to the non-adiabatic couplings) in the weak-coupling regime and intersystem crossing rates, therefore giving access to estimates of the emission yields when no complex photophysical phenomenon is at play. Beyond outlining the underlying theories, we summarize here the results of benchmarks performed for various types of rates, highlighting that both the quality of the vibronic calculations and the accuracy of the relative energies are crucial to reaching semiquantitative estimates. Finally, we illustrate the successes and challenges in determining the fluorescence quantum yields using a series of organic fluorophores.
引用
收藏
页码:10033 / 10053
页数:21
相关论文
共 147 条
[1]   The calculations of excited-state properties with Time-Dependent Density Functional Theory [J].
Adamo, Carlo ;
Jacquemin, Denis .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (03) :845-856
[2]   Duschinsky, Herzberg-Teller, and Multiple Electronic Resonance Interferential Effects in Resonance Raman Spectra and Excitation Profiles. The Case of Pyrene [J].
Avila Ferrer, Francisco J. ;
Barone, Vincenzo ;
Cappelli, Chiara ;
Santoro, Fabrizio .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (08) :3597-3611
[3]   Vibrational Density Matrix Renormalization Group [J].
Baiardi, Alberto ;
Stein, Christopher J. ;
Barone, Vincenzo ;
Reiher, Markus .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (08) :3764-3777
[4]   General formulation of vibronic spectroscopy in internal coordinates [J].
Baiardi, Alberto ;
Bloino, Julien ;
Barone, Vincenzo .
JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (08)
[5]   General Time Dependent Approach to Vibronic Spectroscopy Including Franck-Condon, Herzberg-Teller, and Duschinsky Effects [J].
Baiardi, Alberto ;
Bloino, Julien ;
Barone, Vincenzo .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (09) :4097-4115
[6]   Nonadiabatic dynamics with trajectory surface hopping method [J].
Barbatti, Mario .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2011, 1 (04) :620-633
[7]   Integrated computational strategies for UV/vis spectra of large molecules in solution [J].
Barone, Vincenzo ;
Polimeno, Antonino .
CHEMICAL SOCIETY REVIEWS, 2007, 36 (11) :1724-1731
[8]   Computational molecular spectroscopy [J].
Barone, Vincenzo ;
Alessandrini, Silvia ;
Biczysko, Malgorzata ;
Cheeseman, James R. ;
Clary, David C. ;
McCoy, Anne B. ;
DiRisio, Ryan J. ;
Neese, Frank ;
Melosso, Mattia ;
Puzzarini, Cristina .
NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01)
[9]  
Biczysko M., 2011, Time-Independent Approachesto Simulate Electronic Spectra Lineshapes: From Small Molecules toMacrosystems, P361
[10]   Electron transfer - From isolated molecules to biomolecules [J].
Bixon, M ;
Jortner, J .
ELECTRON TRANSFER-FROM ISOLATED MOLECULES TO BIOMOLECULES, PT 1, 1999, 106 :35-202