Statistical inference in discretely observed fractional Ornstein-Uhlenbeck processes
被引:1
作者:
Li, Yicun
论文数: 0引用数: 0
h-index: 0
机构:
Hangzhou City Univ, Hangzhou Yiyuan Technol Co Ltd, Inst Digital Finance, Hangzhou, BrazilHangzhou City Univ, Hangzhou Yiyuan Technol Co Ltd, Inst Digital Finance, Hangzhou, Brazil
Li, Yicun
[1
]
Teng, Yuanyang
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Hangzhou Yiyuan Technol Co Ltd, Hangzhou, Peoples R ChinaHangzhou City Univ, Hangzhou Yiyuan Technol Co Ltd, Inst Digital Finance, Hangzhou, Brazil
Teng, Yuanyang
[2
]
机构:
[1] Hangzhou City Univ, Hangzhou Yiyuan Technol Co Ltd, Inst Digital Finance, Hangzhou, Brazil
[2] Zhejiang Univ, Hangzhou Yiyuan Technol Co Ltd, Hangzhou, Peoples R China
Fractional Brownian motion;
Increment ratio statistic;
Power variation;
Minimum contrast estimation;
In-fill asymptotics;
Double asymptotics;
STOCHASTIC VOLATILITY;
PARAMETER-ESTIMATION;
BROWNIAN-MOTION;
LONG MEMORY;
ASYMPTOTIC THEORY;
DISTRIBUTIONS;
MODELS;
D O I:
10.1016/j.chaos.2023.114203
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we develop a two-stage method for estimating all the unknown parameters in the fractional Ornstein-Uhlenbeck model from discrete observations. The estimation procedure is built upon the marriage of the power variation and the minimum contrast estimation. In the first stage, the Hurst coefficient is estimated by the increment Bernoulli statistic and the volatility parameter is estimated by power variations. The asymptotic theory of the proposed estimators in the diffusion term are established under an in-fill asymptotic scheme. In the second stage, two drift parameters are estimated based on the minimum contrast estimation. Their asymptotic theory are analyzed via use of a double asymptotic scheme. The results from Monte Carlo studies illustrate that the proposed estimators have reasonable finite sample properties. An empirical illustration based on realized volatility indicates that the realized volatility is rough.
机构:
Univ Tor Vergata, Dipartimento Matemat, Via Ric Scientif, I-00133 Rome, ItalyUniv Tor Vergata, Dipartimento Matemat, Via Ric Scientif, I-00133 Rome, Italy
Abundo, Mario
;
Pirozzi, Enrica
论文数: 0引用数: 0
h-index: 0
机构:
Univ Napoli Federico II, Dipartimento Matemat & Applicazioni, Via Cintia,Complesso Monte S Angelo, I-80126 Naples, ItalyUniv Tor Vergata, Dipartimento Matemat, Via Ric Scientif, I-00133 Rome, Italy
机构:
Univ Roma La Sapienza, MEMOTEF, Rome, ItalyUniv Roma La Sapienza, MEMOTEF, Rome, Italy
Angelini, Daniele
;
Bianchi, Sergio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, MEMOTEF, Rome, Italy
NYU, Dept Finance & Risk Engn, Intl Affiliate, New York, NY USAUniv Roma La Sapienza, MEMOTEF, Rome, Italy
机构:
Univ Tor Vergata, Dipartimento Matemat, Via Ric Scientif, I-00133 Rome, ItalyUniv Tor Vergata, Dipartimento Matemat, Via Ric Scientif, I-00133 Rome, Italy
Abundo, Mario
;
Pirozzi, Enrica
论文数: 0引用数: 0
h-index: 0
机构:
Univ Napoli Federico II, Dipartimento Matemat & Applicazioni, Via Cintia,Complesso Monte S Angelo, I-80126 Naples, ItalyUniv Tor Vergata, Dipartimento Matemat, Via Ric Scientif, I-00133 Rome, Italy
机构:
Univ Roma La Sapienza, MEMOTEF, Rome, ItalyUniv Roma La Sapienza, MEMOTEF, Rome, Italy
Angelini, Daniele
;
Bianchi, Sergio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, MEMOTEF, Rome, Italy
NYU, Dept Finance & Risk Engn, Intl Affiliate, New York, NY USAUniv Roma La Sapienza, MEMOTEF, Rome, Italy