ALMOST RICCI-BOURGUIGNON SOLITON ON WARPED PRODUCT SPACE

被引:0
作者
Kumar, Santosh [1 ]
Kumar, Pankaj [1 ]
Pal, Buddhadev [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Math, Varanasi 221005, India
关键词
warped product; almost Ricci-Bourguignon soliton; Bochner formula; Riemannian map; scalar curvature; INVARIANT RIEMANNIAN MAPS;
D O I
10.1016/s0034-4877(23)00058-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The purpose of this article is to study the almost Ricci-Bourguignon soliton on warped product space. Some results for solenoidal and concurrent vector fields are obtained on warped product space with almost Ricci-Bourguignon soliton. We provide the relation between the warped manifold and its base manifold (fiber manifold) for an almost Ricci-Bourguignon soliton. We also generalize the Bochner formula in warped product space. Next, we study the Riemannian map whose total manifold admits an almost Ricci-Bourguignon soliton. We find the condition for a kernel of Riemannian map to become an almost Ricci-Bourguignon soliton. Moreover, we give an example for almost Ricci-Bourguignon soliton on warped product space.
引用
收藏
页码:99 / 115
页数:17
相关论文
共 50 条
[21]   RICCI SOLITON AND RICCI ALMOST SOLITON WITHIN THE FRAMEWORK OF KENMOTSU MANIFOLD [J].
Ghosh, A. .
CARPATHIAN MATHEMATICAL PUBLICATIONS, 2019, 11 (01) :59-69
[22]   Ricci Curvature on Warped Product Submanifolds of Sasakian-Space-Forms [J].
Mandal, Pradip ;
Pal, Tanumoy ;
Hui, Shyamal Kumar .
FILOMAT, 2020, 34 (12) :3917-3930
[23]   A note on rigidity of the almost Ricci soliton [J].
Abdênago Barros ;
José N. Gomes ;
Ernani Ribeiro .
Archiv der Mathematik, 2013, 100 :481-490
[24]   On the h-almost Ricci soliton [J].
Gomes, J. N. ;
Wang, Qiaoling ;
Xia, Changyu .
JOURNAL OF GEOMETRY AND PHYSICS, 2017, 114 :216-222
[25]   A note on rigidity of the almost Ricci soliton [J].
Barros, Abdenago ;
Gomes, Jose N. ;
Ribeiro, Ernani, Jr. .
ARCHIV DER MATHEMATIK, 2013, 100 (05) :481-490
[26]   Ricci Solitons on Multiply Warped Product Manifolds [J].
Kaya, Dilek Acikgoz ;
Onat, Leyla .
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2020, 13 (02) :152-159
[27]   Gradient Ricci Solitons with Structure of Warped Product [J].
de Sousa, Marcio Lemes ;
Pina, Romildo .
RESULTS IN MATHEMATICS, 2017, 71 (3-4) :825-840
[28]   Gradient Ricci Solitons with Structure of Warped Product [J].
Márcio Lemes de Sousa ;
Romildo Pina .
Results in Mathematics, 2017, 71 :825-840
[29]   Harnack Estimates for Ricci Flow on a Warped Product [J].
Hung Tran .
The Journal of Geometric Analysis, 2016, 26 :1838-1862
[30]   Harnack Estimates for Ricci Flow on a Warped Product [J].
Tran, Hung .
JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (03) :1838-1862