Local minimizers for variational obstacle avoidance on Riemannian manifolds

被引:2
|
作者
Goodman, Jacob R. [1 ]
机构
[1] UAM, CSIC, UC3M, Inst Ciencias Matemat,UCM, Calle Nicolas Cabrera 13-15, Madrid 28049, Spain
关键词
bi-Jacobi fields; biconjugate points; local minimizers; Riemannian geometry; path planning; obstacle avoidance; SYSTEMS; SPLINES;
D O I
10.3934/jgm.2023003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a variational obstacle avoidance problem on complete Riemannian manifolds. That is, we minimize an action functional, among a set of admissible curves, which depends on an artificial potential function used to avoid obstacles. In particular, we generalize the theory of bi-Jacobi fields and biconjugate points and present necessary and sufficient conditions for optimality. Local minimizers of the action functional are divided into two categories-called Q-local minimizers and Omega-local minimizers-and subsequently classified, with local uniqueness results obtained in both cases.
引用
收藏
页码:59 / 72
页数:14
相关论文
共 50 条
  • [21] SIMULATION ON LOCAL OBSTACLE AVOIDANCE ALGORITHM FOR UNMANNED SURFACE VEHICLE
    Wang, C.
    Mao, Y. S.
    Du, K. J.
    Hu, B. Q.
    Song, L. F.
    INTERNATIONAL JOURNAL OF SIMULATION MODELLING, 2016, 15 (03) : 460 - 472
  • [22] Local Lipschitz regularity of vector valued local minimizers of variational integrals with densities depending on the modulus of the gradient
    Fuchs, Martin
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (2-3) : 266 - 272
  • [23] A Unifying Local Convergence Result for Newton's Method in Riemannian Manifolds
    F. Alvarez
    J. Bolte
    J. Munier
    Foundations of Computational Mathematics, 2008, 8 : 197 - 226
  • [24] VFH plus D: An Improvement on the VFH plus Algorithm for Dynamic Obstacle Avoidance and Local Planning
    Diaz, Daniel
    Marin, Leonardo
    IFAC PAPERSONLINE, 2020, 53 (02): : 9590 - 9595
  • [25] Obstacle avoidance algorithms for mobile robots
    Budakova, Dilyana
    Pavlova, Galya
    Trifonov, Roumen
    Chavdarov, Ivan
    COMPUTER SYSTEMS AND TECHNOLOGIES, 2019, : 78 - 83
  • [26] NAVIGATION WITH OBSTACLE AVOIDANCE OF AN AUTONOMOUS SAILBOAT
    Petres, Clement
    Romero-Ramirez, Miguel-Angel
    Plumet, Frederic
    FIELD ROBOTICS, 2012, : 86 - 93
  • [27] A path planning strategy for obstacle avoidance
    Blanc, Guillaume
    Mezouar, Youcef
    Martinet, Philippe
    ICINCO 2006: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS: ROBOTICS AND AUTOMATION, 2006, : 438 - 444
  • [28] A local obstacle avoidance method for mobile robots in partially known environment
    Shia, Chaoxia
    Wang, Yanqing
    Yang, Jingyu
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2010, 58 (05) : 425 - 434
  • [29] Equiangular Navigation Guidance of a Wheeled Mobile Robot with Local Obstacle Avoidance
    Teimoori, Hamid
    Savkin, Andrey V.
    2008 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, VOLS 1-4, 2009, : 1962 - 1967
  • [30] Local Trajectory Planning for Obstacle Avoidance of Unmanned Tracked Vehicles Based on Artificial Potential Field Method
    Zhai, Li
    Liu, Chang
    Zhang, Xueying
    Wang, Chengping
    IEEE ACCESS, 2024, 12 : 19665 - 19681