Local minimizers for variational obstacle avoidance on Riemannian manifolds

被引:2
|
作者
Goodman, Jacob R. [1 ]
机构
[1] UAM, CSIC, UC3M, Inst Ciencias Matemat,UCM, Calle Nicolas Cabrera 13-15, Madrid 28049, Spain
关键词
bi-Jacobi fields; biconjugate points; local minimizers; Riemannian geometry; path planning; obstacle avoidance; SYSTEMS; SPLINES;
D O I
10.3934/jgm.2023003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies a variational obstacle avoidance problem on complete Riemannian manifolds. That is, we minimize an action functional, among a set of admissible curves, which depends on an artificial potential function used to avoid obstacles. In particular, we generalize the theory of bi-Jacobi fields and biconjugate points and present necessary and sufficient conditions for optimality. Local minimizers of the action functional are divided into two categories-called Q-local minimizers and Omega-local minimizers-and subsequently classified, with local uniqueness results obtained in both cases.
引用
收藏
页码:59 / 72
页数:14
相关论文
共 50 条
  • [1] Variational point-obstacle avoidance on Riemannian manifolds
    Anthony Bloch
    Margarida Camarinha
    Leonardo Colombo
    Mathematics of Control, Signals, and Systems, 2021, 33 : 109 - 121
  • [2] Variational point-obstacle avoidance on Riemannian manifolds
    Bloch, Anthony
    Camarinha, Margarida
    Colombo, Leonardo
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2021, 33 (01) : 109 - 121
  • [3] Dynamic interpolation for obstacle avoidance on Riemannian manifolds
    Bloch, Anthony
    Camarinha, Margarida
    Colombo, Leonardo J.
    INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (03) : 588 - 600
  • [4] Reduction by Symmetry in Obstacle Avoidance Problems on Riemannian Manifolds
    Goodman J.R.
    Colombo L.J.
    SIAM Journal on Applied Algebra and Geometry, 2024, 8 (01) : 26 - 53
  • [5] A Decentralized Strategy for Variational Collision Avoidance on Complete Riemannian Manifolds
    Colombo, Leonardo J.
    Goodman, Jacob R.
    CONTROLO 2020, 2021, 695 : 363 - 372
  • [6] COLLISION AVOIDANCE OF MULTIAGENT SYSTEMS ON RIEMANNIAN MANIFOLDS
    Goodman, Jacob R.
    Colombo, Leonardo J.
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2022, 60 (01) : 168 - 188
  • [7] On the derivatives of local minimizers of variational integrals
    Ragusa, Maria Alessandra
    Tachikawa, Atsushi
    9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2012), 2012, 1493 : 778 - 781
  • [8] OBSTACLE AVOIDANCE PLANNING FOR REDUNDANT MANIPULATOR BASED ON VARIATIONAL METHOD
    Liang, Xifeng
    Zhou, Tao
    Wang, Binrui
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2017, 24 (03): : 655 - 662
  • [9] Reduction of Sufficient Conditions in Variational Obstacle Avoidance Problems
    Goodman, Jacob R.
    Colombo, Leonardo J.
    IFAC PAPERSONLINE, 2024, 58 (06): : 60 - 65
  • [10] A method for local obstacle avoidance of mobile robots
    Ko, NY
    Kim, SC
    Cho, HK
    MOBILE ROBOT TECHNOLOGY, PROCEEDINGS, 2001, : 215 - 220