Potential changes in climate indices in Alberta under projected global warming of 1.5-5 °C

被引:8
|
作者
Eum, Hyung-Il [1 ]
Fajard, Babak [1 ]
Tang, Tom [2 ]
Gupta, Anil [1 ,3 ]
机构
[1] Resource Stewardship Div, Alberta Environm & Protected Areas, 3535 Res Rd NW, Calgary, AB T2L 2K8, Canada
[2] Alberta Environm & Protected Areas, Resource Stewardship Div, 2938 11 St NE, Calgary, AB T2E 7L7, Canada
[3] Univ Calgary, Dept Geomatics Engn, 2500 Univ Drive NW, Calgary, AB, Canada
关键词
CMIP6; Global warming; Potential changes; Climate indices; ATHABASCA RIVER-BASIN; MULTIVARIATE BIAS CORRECTION; CHANGE IMPACTS; HYDROLOGICAL MODEL; CHANGE SCENARIOS; WATER-RESOURCES; PRECIPITATION; EXTREMES; ENSEMBLE; UNCERTAINTY;
D O I
10.1016/j.ejrh.2023.101390
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Study region: Alberta province, Canada Study focus: The global average surface temperature has continuously warmed at an unprecedentedly rapid rate since the mid-20th century. Employing CMIP6 (Coupled Model Intercomparison Project Phase 6) climate projections, this study suggested a comprehensive framework with state-of-the-art techniques and evaluated potential changes in climate indices under the GMT changes of + 1.5 & DEG;C, + 2 & DEG;C, + 3 & DEG;C, + 4 & DEG;C, and + 5 & DEG;C in Alberta, Canada.New hydrological insights for the region: Main finding of this study is that a significant warming trend in annual mean temperature was projected from all of the selected CMIP6 climate projections in Alberta while there was no distinct trend in annual precipitation. Under the GMT changes from + 1.5 & DEG;C to + 5 & DEG;C, extreme cold temperature indices were warming at a larger rate in response to the GMT warming. In particular, the warming rate of the annual coldest minimum temperature in Alberta was 2.5 times faster than GMT warming. In addition, a potential decrease in summer precipitation was projected under the GMT warming, leading to a drier and warmer summer in the central and southern parts of Alberta. Furthermore, more extreme drought conditions were projected in Alberta under the GMT warming, indicating that the extreme drought conditions are likely to become more common in Alberta along with the GMT warming.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Projected changes of compound droughts and heatwaves in China under 1.5 °C, 2 °C, and 3 °C of global warming
    Liu, Taizheng
    Zhang, Yuqing
    Guo, Bin
    Yin, Yu
    Ge, Jing
    CLIMATE DYNAMICS, 2024, 62 (07) : 6417 - 6431
  • [2] Projected climate over the Greater Horn of Africa under 1.5 °C and 2 °C global warming
    Osima, Sarah
    Indasi, Victor S.
    Zaroug, Modathir
    Endris, Hussen Seid
    Gudoshava, Masilin
    Misiani, Herbert O.
    Nimusiima, Alex
    Anyah, Richard O.
    Otieno, George
    Ogwang, Bob A.
    Jain, Suman
    Kondowe, Alfred L.
    Mwangi, Emmah
    Lennard, Chris
    Nikulin, Grigory
    Dosio, Alessandro
    ENVIRONMENTAL RESEARCH LETTERS, 2018, 13 (06):
  • [3] Projected changes in wind energy potential over West Africa under the global warming of 1.5 °C and above
    Sawadogo, Windmanagda
    Abiodun, Babatunde J.
    Okogbue, Emmanuel Chilekwu
    THEORETICAL AND APPLIED CLIMATOLOGY, 2019, 138 (1-2) : 321 - 333
  • [4] The southern African climate under 1.5 °C and 2 °C of global warming as simulated by CORDEX regional climate models
    Maure, G.
    Pinto, I.
    Ndebele-Murisa, M.
    Muthige, M.
    Lennard, C.
    Nikulin, G.
    Dosio, A.
    Meque, A.
    ENVIRONMENTAL RESEARCH LETTERS, 2018, 13 (06):
  • [5] Projected changes in extreme climate events over Africa under 1.5°C, 2.0°C and 3.0°C global warming levels based on CMIP6 projections
    Ayugi, Brian Odhiambo
    Chung, Eun-Sung
    Zhu, Huanhuan
    Ogega, Obed M.
    Babousmail, Hassen
    Ongoma, Victor
    ATMOSPHERIC RESEARCH, 2023, 292
  • [6] Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming
    Wang, Zhili
    Lin, Lei
    Zhang, Xiaoye
    Zhang, Hua
    Liu, Liangke
    Xu, Yangyang
    SCIENTIFIC REPORTS, 2017, 7
  • [7] Climate Impacts in Europe Under+1.5°C Global Warming
    Jacob, Daniela
    Kotova, Lola
    Teichmann, Claas
    Sobolowski, Stefan P.
    Vautard, Robert
    Donnelly, Chantal
    Koutroulis, Aristeidis G.
    Grillakis, Manolis G.
    Tsanis, Ioannis K.
    Damm, Andrea
    Sakalli, Abdulla
    van Vliet, Michelle T. H.
    EARTHS FUTURE, 2018, 6 (02) : 264 - 285
  • [8] Potential impacts of global warming levels 1.5°C and above on climate extremes in Botswana
    Akinyemi, Felicia O.
    Abiodun, Babatunde J.
    CLIMATIC CHANGE, 2019, 154 (3-4) : 387 - 400
  • [9] Projected precipitation changes over China for global warming levels at 1.5 °C and 2 °C in an ensemble of regional climate simulations: impact of bias correction methods
    Guo, Lianyi
    Jiang, Zhihong
    Chen, Deliang
    Le Treut, Herve
    Li, Laurent
    CLIMATIC CHANGE, 2020, 162 (02) : 623 - 643
  • [10] Changes in climate extremes over West and Central Africa at 1.5 °C and 2 °C global warming
    Diedhiou, Arona
    Bichet, Adeline
    Wartenburger, Richard
    Seneviratne, Sonia, I
    Rowell, David P.
    Sylla, Mouhamadou B.
    Diallo, Ismaila
    Todzo, Stella
    Toure, N'datchoh E.
    Camara, Moctar
    Ngatchah, Benjamin Ngounou
    Kane, Ndjido A.
    Tall, Laure
    Affholder, Francois
    ENVIRONMENTAL RESEARCH LETTERS, 2018, 13 (06):