THE COMPLEXITY OF QUASIVARIETY LATTICES. II

被引:0
作者
Schwidefsky, M. V. [1 ]
机构
[1] Novosibirsk State Univ, Pirogova Str 1, Novosibirsk 630090, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2023年 / 20卷 / 01期
基金
俄罗斯科学基金会;
关键词
inverse limit; quasi-equational basis; quasivariety; profinite structure; profinite quasivariety; DIFFERENTIAL GROUPOIDS; QUASIVARIETIES; UNIVERSALITY; CONGRUENCES; PRINCIPAL;
D O I
10.33048/semi.2023.20.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if a quasivariety K contains a finite B*-class relative to some subquasivariety and some variety possessing some additional property, then K contains continuum many Q-universal non-profinite subquasivarieties having an independent quasi-equational basis as well as continuum many Q-universal non-profinite subquasivarieties having no such basis.
引用
收藏
页码:501 / 513
页数:13
相关论文
共 32 条
[21]   Structure of Quasivariety Lattices. I. Independent Axiomatizability [J].
Kravchenko, A. V. ;
Nurakunov, A. M. ;
Schwidefsky, M. V. .
ALGEBRA AND LOGIC, 2019, 57 (06) :445-462
[22]   On representation of finite lattices [J].
Kravchenko, A. V. ;
Nurakunov, A. M. ;
Schwidefsky, M. V. .
ALGEBRA UNIVERSALIS, 2019, 80 (01)
[23]  
Kravchenko AV, 2017, SIB ELECTRON MATH RE, V14, P1330, DOI 10.17377/semi.2017.14.114
[24]  
Nurakunov A. M., 2022, PROFINITE LOCA UNPUB
[25]   PROFINITENESS IN FINITELY GENERATED VARIETIES IS UNDECIDABLE [J].
Nurakunov, Anvar M. ;
Stronkowski, Michal M. .
JOURNAL OF SYMBOLIC LOGIC, 2018, 83 (04) :1566-1578
[26]  
Pultr A., 1980, Mathematical Studies
[27]  
Romanowska AB., 2002, Modes, DOI 10.1142/4953
[28]   ON SUFFICIENT CONDITIONS FOR Q-UNIVERSALITY [J].
Schwidefsky, M., V .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 :1043-1051
[29]   EXISTENCE OF INDEPENDENT QUASI-EQUATIONAL BASES [J].
Schwidefsky, M. V. .
ALGEBRA AND LOGIC, 2020, 58 (06) :514-537
[30]   COMPLEXITY OF QUASIVARIETY LATTICES [J].
Schwidefsky, M. V. .
ALGEBRA AND LOGIC, 2015, 54 (03) :245-257