Artificial intelligence bias in medical system designs: a systematic review

被引:9
作者
Kumar, Ashish [1 ]
Aelgani, Vivekanand [2 ]
Vohra, Rubeena [3 ]
Gupta, Suneet K. [1 ]
Bhagawati, Mrinalini [4 ]
Paul, Sudip [4 ]
Saba, Luca [5 ]
Suri, Neha [6 ]
Khanna, Narendra N. [7 ]
Laird, John R. [8 ]
Johri, Amer M. [9 ]
Kalra, Manudeep [10 ]
Fouda, Mostafa M. [11 ]
Fatemi, Mostafa [12 ]
Naidu, Subbaram [13 ]
Suri, Jasjit S. [14 ]
机构
[1] Bennett Univ, Sch Comp Sci Engn & Technol, Greater Noida, UP, India
[2] CMR Coll Engn & Technol, Dept CSE, Seethariguda, Telangana, India
[3] Bharati Vidyapeeths Coll Engn, Dept ECE, New Delhi, India
[4] North Eastern Hill Univ, Dept Biomed Engn, Shillong, India
[5] Univ Cagliari, Dept Radiol, Cagliari, Italy
[6] Mira Loma High Sch, Sacramento, CA 95821 USA
[7] Indraprastha APOLLO Hosp, Dept Cardiol, New Delhi, India
[8] St Helena Hosp, Cardiol Dept, St Helena, CA USA
[9] Queens Univ, Dept Med, Div Cardiol, Kingston, ON, Canada
[10] Massachusetts Gen Hosp, Dept Radiol, 55 Fruit St, Boston, MA USA
[11] Idaho State Univ, Dept Elect & Comp Engn, Pocatello, ID 83209 USA
[12] Mayo Clin, Coll Med & Sci, Dept Physiol & BME, Rochester, MN 55441 USA
[13] Univ Minnesota, Elect Engn Dept, Duluth, MN 55812 USA
[14] AtheroPoint, Stroke Diagnost & Monitoring Div, Roseville, CA 95661 USA
关键词
Data bias; Algorithmic bias; Bias visualization; Bias accountability; Mitigating bias; Legal manifestations; RISK; DISCRIMINATION; HEALTH; AI; CLASSIFICATION; FUTURE; PLAQUE;
D O I
10.1007/s11042-023-16029-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Inherent bias in the artificial intelligence (AI)-model brings inaccuracies and variabilities during clinical deployment of the model. It is challenging to recognize the source of bias in AI-model due to variations in datasets and black box nature of system design. Additionally, there is no distinct process to identify the potential source of bias in the AI-model. To the best of our knowledge, this is the first review of its kind that addresses the bias in AI-model by categorizing 48 studies into three classes, namely, point-based, image-based, and hybrid-based AI-models. Selection strategy using PRISMA is adopted to select the 72 crucial AI studies for identifying bias in AI models. Using the three classes, bias is identified in these studies based on 44 critical AI attributes. Bias in the AI-models is computed by analytical, butterfly, and ranking-based bias models. These bias models were evaluated using two experts and compared using variability analysis. AI-studies that lacked sufficient AI-attributes are more prone to risk-of-bias (RoB) in all three classes. Studies with high RoB loses fins in the butterfly model. It has been analyzed that the majority of the studies in healthcare suffer from data bias and algorithmic bias due to incomplete specifications mentioned in the design protocol and weak AI design exploited for prediction.
引用
收藏
页码:18005 / 18057
页数:53
相关论文
共 160 条
[1]   Risk of Training Diagnostic Algorithms on Data with Demographic Bias [J].
Abbasi-Sureshjani, Samaneh ;
Raumanns, Ralf ;
Michels, Britt E. J. ;
Schouten, Gerard ;
Cheplygina, Veronika .
INTERPRETABLE AND ANNOTATION-EFFICIENT LEARNING FOR MEDICAL IMAGE COMPUTING, IMIMIC 2020, MIL3ID 2020, LABELS 2020, 2020, 12446 :183-192
[2]   Evolutionary Algorithm-Based Classifier Parameter Tuning for Automatic Ovarian Cancer Tissue Characterization and Classification [J].
Acharya, U. R. ;
Mookiah, M. R. K. ;
Sree, S. Vinitha ;
Yanti, R. ;
Martis, R. J. ;
Saba, L. ;
Molinari, F. ;
Guerriero, S. ;
Suri, J. S. .
ULTRASCHALL IN DER MEDIZIN, 2014, 35 (03) :237-245
[3]   Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization [J].
Acharya, U. Rajendra ;
Faust, Oliver ;
Sree, Vinitha S. ;
Alvin, A. P. C. ;
Krishnamurthi, Ganapathy ;
Seabra, Jose C. R. ;
Sanches, Joao ;
Suri, Jasjit S. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 110 (01) :66-75
[4]   Eight pruning deep learning models for low storage and high-speed COVID-19 computed tomography lung segmentation and heatmap-based lesion localization: A multicenter study using COVLIAS 2.0 [J].
Agarwal, Mohit ;
Agarwal, Sushant ;
Saba, Luca ;
Chabert, Gian Luca ;
Gupta, Suneet ;
Carriero, Alessandro ;
Pasche, Alessio ;
Danna, Pietro ;
Mehmedovic, Armin ;
Faa, Gavino ;
Shrivastava, Saurabh ;
Jain, Kanishka ;
Jain, Harsh ;
Jujaray, Tanay ;
Singh, Inder M. ;
Turk, Monika ;
Chadha, Paramjit S. ;
Johri, Amer M. ;
Khanna, Narendra N. ;
Mavrogeni, Sophie ;
Laird, John R. ;
Sobel, David W. ;
Miner, Martin ;
Balestrieri, Antonella ;
Sfikakis, Petros P. ;
Tsoulfas, George ;
Misra, Durga Prasanna ;
Agarwal, Vikas ;
Kitas, George D. ;
Teji, Jagjit S. ;
Al-Maini, Mustafa ;
Dhanjil, Surinder K. ;
Nicolaides, Andrew ;
Sharma, Aditya ;
Rathore, Vijay ;
Fatemi, Mostafa ;
Alizad, Azra ;
Krishnan, Pudukode R. ;
Yadav, Rajanikant R. ;
Nagy, Frence ;
Kincses, Zsigmond Tamas ;
Ruzsa, Zoltan ;
Naidu, Subbaram ;
Viskovic, Klaudija ;
Kalra, Manudeep K. ;
Suri, Jasjit S. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
[5]   Attenuation of Human Bias in Artificial Intelligence: An Exploratory Approach [J].
Ahmed, Saad ;
Athyaab, Saif Ali ;
Muqtadeer, Shaik Abdul .
PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2021), 2021, :557-563
[6]   Unsupervised Domain Adaptation to Classify Medical Images Using Zero-Bias Convolutional Auto-Encoders and Context-Based Feature Augmentation [J].
Ahn, Euijoon ;
Kumar, Ashnil ;
Fulham, Michael ;
Feng, Dagan ;
Kim, Jinman .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (07) :2385-2394
[7]   Algorithmic bias in data-driven innovation in the age of AI [J].
Akter, Shahriar ;
McCarthy, Grace ;
Sajib, Shahriar ;
Michael, Katina ;
Dwivedi, Yogesh K. ;
D'Ambra, John ;
Shen, K. N. .
INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2021, 60 (60)
[8]   Does imbalance in chest X-ray datasets produce biased deep learning approaches for COVID-19 screening? [J].
Alvarez-Rodriguez, Lorena ;
de Moura, Joaquim ;
Novo, Jorge ;
Ortega, Marcos .
BMC MEDICAL RESEARCH METHODOLOGY, 2022, 22 (01)
[9]   PCA-based polling strategy in machine learning framework for coronary artery disease risk assessment in intravascular ultrasound: A link between carotid and coronary grayscale plaque morphology [J].
Araki, Tadashi ;
Ikeda, Nobutaka ;
Shukla, Devarshi ;
Jain, Pankaj K. ;
Londhe, Narendra D. ;
Shrivastava, Vimal K. ;
Banchhor, Sumit K. ;
Saba, Luca ;
Nicolaides, Andrew ;
Shafique, Shoaib ;
Laird, John R. ;
Suri, Jasjit S. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 128 :137-158
[10]  
Ashraf A., 2018, ARXIV