Mortality risk prediction of the electrocardiogram as an informative indicator of cardiovascular diseases

被引:12
|
作者
Tsai, Dung-Jang [1 ,2 ,3 ,4 ]
Lou, Yu-Sheng [2 ,3 ,5 ]
Lin, Chin-Sheng [6 ]
Fang, Wen-Hui [7 ]
Lee, Chia-Cheng [8 ,9 ]
Ho, Ching-Liang [10 ]
Wang, Chih-Hung [11 ,12 ]
Lin, Chin [2 ,3 ,4 ,5 ]
机构
[1] Fu Jen Catholic Univ, Dept Stat & Informat Sci, New Taipei City, Taiwan
[2] Natl Def Med Ctr, Triserv Gen Hosp, Artificial Intelligence Things Ctr, Taipei, Taiwan
[3] Natl Def Med Ctr, Triserv Gen Hosp, Grad Inst Life Sci, Taipei, Taiwan
[4] Natl Def Med Ctr, Med Technol Educ Ctr, Sch Med, Taipei, Taiwan
[5] Natl Def Med Ctr, Sch Publ Hlth, Taipei, Taiwan
[6] Natl Def Med Ctr, Triserv Gen Hosp, Dept Internal Med, Div Cardiol, Taipei, Taiwan
[7] Natl Def Med Ctr, Triserv Gen Hosp, Dept Family & Community Med, Dept Internal Med, Taipei, Taiwan
[8] Natl Def Med Ctr, Triserv Gen Hosp, Med Informat Off, Taipei, Taiwan
[9] Natl Def Med Ctr, Triserv Gen Hosp, Dept Surg, Div Colorectal Surg, Taipei, Taiwan
[10] Natl Def Med Ctr, Triserv Gen Hosp, Div Hematol & Oncol, Taipei, Taiwan
[11] Natl Def Med Ctr, Triserv Gen Hosp, Dept Otolaryngol Head & Neck Surg, Taipei, Taiwan
[12] Natl Def Med Ctr, Grad Inst Med Sci, Taipei, Taiwan
来源
DIGITAL HEALTH | 2023年 / 9卷
关键词
Artificial intelligence; electrocardiogram; deep learning; mortality; cardiovascular disease; risk stratification; electronic health record; CORONARY EVENTS; HEART-DISEASE; MINAS-GERAIS; HEALTH-CARE; SCORE; PREVENTION; RECOMMENDATIONS; COHORT;
D O I
10.1177/20552076231187247
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
BackgroundThe electrocardiogram (ECG) may be the most popular test in the management of cardiovascular disease (CVD). Although wide applications of artificial intelligence (AI)-enabled ECG have been developed, an integrating indicator for CVD risk stratification was not investigated. Since mortality may be the most important global outcome, this study aimed to develop a survival deep learning model (DLM) to establish a critical ECG value and explore the associations with various CVD events. MethodsWe trained a DLM with 451,950 12-lead resting ECGs obtained from 210,552 patients, for whom 23,592 events occurred. The internal validation set included 27,808 patients with one ECG for each patient. The external validations were performed in a community hospital with 33,047 patients and two transnational data sets with 233,647 and 1631 ECGs. We distinguished the cause of mortality and additionally investigated CVD-related outcomes, including new-onset acute myocardial infarction (AMI), stroke (STK), and heart failure (HF). ResultsThe DLM achieved C-indices of 0.858/0.836 in internal/external validation sets by using ECG over a 10-year period. The high-mortality-risk group identified by the proposed DLM presented a hazard ratio (HR) of 14.16 (95% confidence interval (CI): 11.33-17.70) compared to the low-risk group in the internal validation and presented a higher risk of cardiovascular (CV) mortality (HR: 18.50, 95% CI: 9.82-34.84), non-CV mortality (HR: 13.68, 95% CI: 10.76-17.38), AMI (HR: 4.01, 95% CI: 2.24-7.17), STK (HR: 2.15, 95% CI: 1.70-2.72), and HF (HR: 6.66, 95% CI: 4.54-9.77), which was consistent in an independent community hospital. The transnational validation also revealed HRs of 4.91 (95% CI: 2.63-9.16) and 2.29 (95% CI: 2.15-2.44) for all-cause mortality in the SaMi-Trop and Clinical Outcomes in Digital Electrocardiography 15% (CODE15) cohorts. ConclusionsThe mortality risk by AI-enabled ECG may be applied in passive electronic-health-record-based CVD risk screening, which may identify more asymptomatic and unaware high-risk patients.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Cardiovascular Diseases in Indigenous Populations: An Indicator Of Inequality
    Stein, Airton Tetelbom
    ARQUIVOS BRASILEIROS DE CARDIOLOGIA, 2018, 110 (03) : 246 - 247
  • [42] Risk Prediction Using Polygenic Risk Scores for Prevention of Stroke and Other Cardiovascular Diseases
    Abraham, Gad
    Rutten-Jacobs, Loes
    Inouye, Michael
    STROKE, 2021, 52 (09) : 2983 - 2991
  • [43] Artificial intelligence-enabled electrocardiogram for mortality and cardiovascular risk estimation: a model development and validation study
    Sau, Arunashis
    Pastika, Libor
    Sieliwonczyk, Ewa
    Patlatzoglou, Konstantinos
    Ribeiro, Antonio H.
    Mcgurk, Kathryn A.
    Zeidaabadi, Boroumand
    Zhang, Henry
    Macierzanka, Krzysztof
    Mandic, Danilo
    Sabino, Ester
    Giatti, Luana
    Barreto, Sandhi M.
    Camelo, Lidyane do Valle
    Tzoulaki, Joanna
    O'Regan, Declan P.
    Peters, Nicholas S.
    Ware, James S.
    Ribeiro, Antonio Luiz P.
    Kramer, Daniel B.
    Waks, Jonathan W.
    Ng, Fu Siong
    LANCET DIGITAL HEALTH, 2024, 6 (11): : e791 - e802
  • [44] Incidence of 12 common cardiovascular diseases and subsequent mortality risk in the general population
    Prugger, Christof
    Perier, Marie-Cecile
    Gonzalez-Izquierdo, Arturo
    Hemingway, Harry
    Denaxas, Spiros
    Empana, Jean-Philippe
    EUROPEAN JOURNAL OF PREVENTIVE CARDIOLOGY, 2023, 30 (15) : 1715 - 1722
  • [45] Utility of GAN generated synthetic data for cardiovascular diseases mortality prediction: an experimental study
    Khan, Shahzad Ahmed
    Murtaza, Hajra
    Ahmed, Musharif
    HEALTH AND TECHNOLOGY, 2024, 14 (03) : 557 - 580
  • [46] Integrating electrocardiogram and fundus images for early detection of cardiovascular diseases
    Muthukumar, K. A.
    Nandi, Dhruva
    Ranjan, Priya
    Ramachandran, Krithika
    Shiny, P. J.
    Ghosh, Anirban
    Ashwini, M.
    Radhakrishnan, Aiswaryah
    Dhandapani, V. E.
    Janardhanan, Rajiv
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [47] Adiponectin - A comprehensive cardiovascular risk indicator
    Calomfirescu, N. E.
    Jurcut, R.
    Serban, M.
    Ginghina, C.
    ATHEROSCLEROSIS SUPPLEMENTS, 2007, 8 (01) : 159 - 159
  • [48] LEUKOCYTE COUNT - A CARDIOVASCULAR RISK INDICATOR
    ERNST, E
    HERZ KREISLAUF, 1987, 19 (02): : 108 - 112
  • [49] MORTALITY FROM CARDIOVASCULAR-DISEASES
    不详
    WHO CHRONICLE, 1960, 14 (06) : 228 - 231