Hydrogel Drug Delivery Systems for Bone Regeneration

被引:30
作者
Bai, Long [1 ,2 ]
Tao, Gang [3 ]
Feng, Maogeng [3 ]
Xie, Yuping [1 ]
Cai, Shuyu [1 ]
Peng, Shuanglin [1 ]
Xiao, Jingang [1 ,2 ,3 ]
机构
[1] Southwest Med Univ, Dept Oral Implantol, Affiliated Stomatol Hosp, Luzhou 646000, Peoples R China
[2] Southwest Med Univ, Dept Oral & Maxillofacial Surg, Affiliated Hosp, Luzhou 646000, Peoples R China
[3] Southwest Med Univ, Luzhou Key Lab Oral & Maxillofacial Reconstruct &, Affiliated Stomatol Hosp, Luzhou 646000, Peoples R China
基金
中国国家自然科学基金;
关键词
hydrogels; drug delivery systems; bone regeneration; cartilage regeneration; mesenchymal stem cells; bone immunomodulation; tissue engineering; MESENCHYMAL STEM-CELLS; COMPOSITE SCAFFOLD; CHONDROGENIC DIFFERENTIATION; CARTILAGE REGENERATION; EXTRACELLULAR-MATRIX; LADEN HYDROGEL; MESSENGER-RNA; TISSUE; REPAIR; RELEASE;
D O I
10.3390/pharmaceutics15051334
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
With the in-depth understanding of bone regeneration mechanisms and the development of bone tissue engineering, a variety of scaffold carrier materials with desirable physicochemical properties and biological functions have recently emerged in the field of bone regeneration. Hydrogels are being increasingly used in the field of bone regeneration and tissue engineering because of their biocompatibility, unique swelling properties, and relative ease of fabrication. Hydrogel drug delivery systems comprise cells, cytokines, an extracellular matrix, and small molecule nucleotides, which have different properties depending on their chemical or physical cross-linking. Additionally, hydrogels can be designed for different types of drug delivery for specific applications. In this paper, we summarize recent research in the field of bone regeneration using hydrogels as delivery carriers, detail the application of hydrogels in bone defect diseases and their mechanisms, and discuss future research directions of hydrogel drug delivery systems in bone tissue engineering.
引用
收藏
页数:26
相关论文
共 211 条
[1]   Cutting-edge progress and challenges in stimuli responsive hydrogel microenvironment for success in tissue engineering today [J].
Abdollahiyan, Parinaz ;
Baradaran, Behzad ;
de la Guardia, Miguel ;
Oroojalian, Fatemeh ;
Mokhtarzadeh, Ahad .
JOURNAL OF CONTROLLED RELEASE, 2020, 328 :514-531
[2]   Craniofacial Bone Tissue Engineering: Current Approaches and Potential Therapy [J].
Aghali, Arbi .
CELLS, 2021, 10 (11)
[3]   Facilitated Transdermal Drug Delivery Using Nanocarriers-Embedded Electroconductive Hydrogel Coupled with Reverse Electrodialysis-Driven Iontophoresis [J].
An, Young-Hyeon ;
Lee, Joon ;
Son, Dong Uk ;
Kang, Dong Hyeon ;
Park, Mihn Jeong ;
Cho, Kyoung Won ;
Kim, Semin ;
Kim, Su-Hwan ;
Ko, Junghyeon ;
Jang, Myoung-Hoon ;
Lee, Jae Young ;
Kim, Dae-Hyeong ;
Hwang, Nathaniel S. .
ACS NANO, 2020, 14 (04) :4523-4535
[4]   Sexually dimorphic estrogen sensing in skeletal stem cells controls skeletal regeneration [J].
Andrew, Tom W. ;
Koepke, Lauren S. ;
Wang, Yuting ;
Lopez, Michael ;
Steininger, Holly ;
Struck, Danielle ;
Boyko, Tatiana ;
Ambrosi, Thomas H. ;
Tong, Xinming ;
Sun, Yuxi ;
Gulati, Gunsagar S. ;
Murphy, Matthew P. ;
Marecic, Owen ;
Telvin, Ruth ;
Schallmoser, Katharina ;
Strunk, Dirk ;
Seita, Jun ;
Goodman, Stuart B. ;
Yang, Fan ;
Longaker, Michael T. ;
Yang, George P. ;
Chan, Charles K. F. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[5]   Fibrin Glue/Fibronectin/Heparin-Based Delivery System of BMP2 Induces Osteogenesis in MC3T3-E1 Cells and Bone Formation in Rat Calvarial Critical-Sized Defects [J].
Ao, Qiang ;
Wang, Shilin ;
He, Qing ;
Ten, Hirotomo ;
Oyama, Kenichi ;
Ito, Akihiro ;
He, Jing ;
Javed, Rabia ;
Wang, Aijun ;
Matsuno, Akira .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (11) :13400-13410
[6]   Functional Biomaterials for Bone Regeneration: A Lesson in Complex Biology [J].
Armiento, Angela Rita ;
Hatt, Luan Phelipe ;
Sanchez Rosenberg, Guillermo ;
Thompson, Keith ;
Stoddart, Martin James .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (44)
[7]   Enhanced osseointegration of three-dimensional supramolecular bioactive interface through osteoporotic microenvironment regulation [J].
Bai, Haotian ;
Zhao, Yue ;
Wang, Chenyu ;
Wang, Zhonghan ;
Wang, Jincheng ;
Liu, Hou ;
Feng, Yubin ;
Lin, Quan ;
Li, Zuhao ;
Liu, He .
THERANOSTICS, 2020, 10 (11) :4779-4794
[8]   Biomimetic osteogenic peptide with mussel adhesion and osteoimmunomodulatory functions to ameliorate interfacial osseointegration under chronic inflammation [J].
Bai, Jiaxiang ;
Wang, Huaiyu ;
Chen, Hao ;
Ge, Gaoran ;
Wang, Miao ;
Gao, Ang ;
Tong, Liping ;
Xu, Yaozeng ;
Yang, Huiling ;
Pan, Guoqing ;
Chu, Paul K. ;
Geng, Dechun .
BIOMATERIALS, 2020, 255
[9]   Spatiotemporal release of BMP-2 and VEGF enhances osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells co-encapsulated in a patterned hydrogel [J].
Barati, Danial ;
Shariati, Seyed Ramin Pajoum ;
Moeinzadeh, Seyedsina ;
Melero-Martin, Juan M. ;
Khademhosseini, Ali ;
Jabbari, Esmaiel .
JOURNAL OF CONTROLLED RELEASE, 2016, 223 :126-136
[10]   Harnessing the Noncovalent Interactions of DNA Backbone with 2D Silicate Nanodisks To Fabricate Injectable Therapeutic Hydrogels [J].
Basu, Sayantani ;
Pacelli, Settimio ;
Feng, Yi ;
Lu, Qinghua ;
Wang, Jinxi ;
Paul, Arghya .
ACS NANO, 2018, 12 (10) :9866-9880