Digital holographic technique based breast cancer detection using transfer learning method

被引:4
作者
Thomas, Leena [1 ,2 ,3 ,4 ]
Sheeja, M. K. [1 ,2 ]
机构
[1] Sree Chitra Thirunal Coll Engn, Dept Elect & Commun Engn, Thiruvananthapuram, Kerala, India
[2] APJ Abdul Kalam Technol Univ, Thiruvananthapuram, Kerala, India
[3] Coll Engn Kallooppara, Pathanamthitta, Kerala, India
[4] Sree Chitra Thirunal Coll Engn, Dept Elect & Commun Engn, Thiruvananthapuram 695018, Kerala, India
关键词
breast tissue; deep learning; digital holography; interferometry; transfer learning; CLASSIFICATION;
D O I
10.1002/jbio.202200359
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The digital holographic technique is an interferometric method that provides comprehensive information on morphological traits such as cell layer thickness and shape as well as access to biophysical attributes of cells like refractive index, dry mass, and volume. This method helps characterize sample structures in three dimensions both statically and dynamically, even for transparent objects like living biological cells. This research work captures the digital holograms of breast tissues and analyzes the malignancy of the tissue using a deep learning technique. It enables dynamic measurement of the sample under investigation. Different transfer learning models such as Inception, DenseNet, SqueezeNet, VGG, and ResNet are incorporated in this work. The parameters accuracy, precision, sensitivity, and F1 score of different models are compared and found that the ResNet model outperforms better compared to other models.
引用
收藏
页数:10
相关论文
共 26 条
  • [1] Ali N., 2019, BIOPHOTONICS TRANSLA, P1
  • [2] Breast Cancer Classification from Histopathological Images with Inception Recurrent Residual Convolutional Neural Network
    Alom, Md Zahangir
    Yakopcic, Chris
    Nasrin, Shamima
    Taha, Tarek M.
    Asari, Vijayan K.
    [J]. JOURNAL OF DIGITAL IMAGING, 2019, 32 (04) : 605 - 617
  • [3] Breast cancer in young women: an overview
    Anastasiadi, Zoi
    Lianos, Georgios D.
    Ignatiadou, Eleftheria
    Harissis, Haralampos V.
    Mitsis, Michail
    [J]. UPDATES IN SURGERY, 2017, 69 (03) : 313 - 317
  • [4] Classification of breast cancer histology images using Convolutional Neural Networks
    Araujo, Teresa
    Aresta, Guilherme
    Castro, Eduardo
    Rouco, Jose
    Aguiar, Paulo
    Eloy, Catarina
    Polonia, Antonio
    Campilho, Aurelio
    [J]. PLOS ONE, 2017, 12 (06):
  • [5] Quantum transfer learning for breast cancer detection
    Azevedo, Vanda
    Silva, Carla
    Dutra, Ines
    [J]. QUANTUM MACHINE INTELLIGENCE, 2022, 4 (01)
  • [6] Gong BM, 2020, I S BIOMED IMAGING, P1106, DOI [10.1109/ISBI45749.2020.9098438, 10.1109/isbi45749.2020.9098438]
  • [7] Guo Y., 2018, APPL PHYS B-LASERS O
  • [8] Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy
    He, Xuefei
    Chuong Vinh Nguyen
    Pratap, Mrinalini
    Zheng, Yujie
    Wang, Yi
    Nisbet, David R.
    Williams, Richard J.
    Rug, Melanie
    Maier, Alexander G.
    Lee, Woei Ming
    [J]. BIOMEDICAL OPTICS EXPRESS, 2016, 7 (08): : 3111 - 3123
  • [9] Cell Cycle Stage Classification Using Phase Imaging with Computational Specificity
    He, Yuchen R.
    He, Shenghua
    Kandel, Mikhail E.
    Lee, Young Jae
    Hu, Chenfei
    Sobh, Nahil
    Anastasio, Mark A.
    Popescu, Gabriel
    [J]. ACS PHOTONICS, 2022, 9 (04) : 1264 - 1273
  • [10] Breast Cancer Classification From Histopathological Images Using Patch-Based Deep Learning Modeling
    Hirra, Irum
    Ahmad, Mubashir
    Hussain, Ayaz
    Ashraf, M. Usman
    Saeed, Iftikhar Ahmed
    Qadri, Syed Furqan
    Alghamdi, Ahmed M.
    Alfakeeh, Ahmed S.
    [J]. IEEE ACCESS, 2021, 9 : 24273 - 24287