Design and Optimization of a Waste Heat Recovery Organic Rankine Cycle System with a Steam-Water Dual Heat Source

被引:4
|
作者
Wang, Shiqi [1 ]
Yuan, Zhongyuan [1 ]
Yu, Nanyang [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech Engn, 111 North Sect 1,2nd Ring Rd, Chengdu 610031, Peoples R China
关键词
dual heat sources; net output power; organic Rankine cycle; particle swarm optimization (PSO); steam; water; SINGLE-SCREW EXPANDER; MULTIOBJECTIVE OPTIMIZATION; ORC SYSTEM; THERMODYNAMIC ANALYSIS; PERFORMANCE ANALYSIS; PARAMETRIC OPTIMIZATION; THERMOECONOMIC ANALYSIS; WORKING FLUID; NATURAL-GAS; ENGINE;
D O I
10.1002/ente.202201499
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The organic Rankine cycle (ORC) system in plants, powered by dual steam-water heat sources, has significant power generation potential and practical research value. Herein, the conditions of 700 kPa saturated steam and 650 kPa, 90 degrees C water heat source are considered. Four configurations of steam-water dual heat source waste heat recovery ORC systems are proposed. The independent parameters affecting the net output power of the system are obtained by developing a mathematical model and optimizing it using the particle swarm optimization method. The results show that the location of the pinch-point temperature difference in various ORC loops and the allowable working pressure of the heat exchanger are determinants of independent parameters. The net output powers of the conventional dual-loop ORC (CD-ORC), single-loop ORC (S-ORC), split-flow dual-loop ORC (SFD-ORC), and split-flow triple-loop ORC SFT-ORC systems under the optimal design parameters are 2415.73, 2168.6, 2599.62, and 2716.75 kW, respectively. In addition, S-ORC has the highest exergy efficiency of 55.17%. SFD-ORC and SFT-ORC have approximate to 48% exergy efficiency, and CD-ORC has the lowest exergy efficiency of 45.33%.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Thermo-economic optimization of organic Rankine cycle with steam-water dual heat source
    Wang, Shiqi
    Yuan, Zhongyuan
    Yu, Nanyang
    ENERGY, 2023, 274
  • [2] A recent review of waste heat recovery by Organic Rankine Cycle
    Mahmoudi, A.
    Fazli, M.
    Morad, M. R.
    APPLIED THERMAL ENGINEERING, 2018, 143 : 660 - 675
  • [3] Parametric optimization and heat transfer analysis of a dual loop ORC (organic Rankine cycle) system for CNG engine waste heat recovery
    Yang, Fubin
    Zhang, Hongguang
    Yu, Zhibin
    Wang, Enhua
    Meng, Fanxiao
    Liu, Hongda
    Wang, Jingfu
    ENERGY, 2017, 118 : 753 - 775
  • [4] Thermodynamic analysis and optimization of a partial evaporating dual-pressure organic rankine cycle system for low-grade heat recovery
    Li, Dantong
    He, Zhilong
    Wang, Qi
    Wang, Xiaolin
    Wu, Weifeng
    Xing, Ziwen
    APPLIED THERMAL ENGINEERING, 2021, 185
  • [5] Experimental investigation of a splitting organic Rankine cycle for dual waste heat recovery
    Liu, Haoyi
    Lu, Bowen
    Xu, Yao
    Ju, Xueming
    Wang, Wei
    Zhang, Zhifu
    Shi, Lingfeng
    Tian, Hua
    Shu, Gequn
    ENERGY CONVERSION AND MANAGEMENT, 2024, 320
  • [6] A novel waste heat recovery system combing steam Rankine cycle and organic Rankine cycle for marine engine
    Liu, Xiangyang
    Manh Quang Nguyen
    Chu, Jianchu
    Lan, Tian
    He, Maogang
    JOURNAL OF CLEANER PRODUCTION, 2020, 265
  • [7] Thermoeconomic multi-objective optimization of an organic Rankine cycle for exhaust waste heat recovery of a diesel engine
    Yang, Fubin
    Zhang, Hongguang
    Song, Songsong
    Bei, Chen
    Wang, Hongjin
    Wang, Enhua
    ENERGY, 2015, 93 : 2208 - 2228
  • [8] A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships
    Andreasen, Jesper Graa
    Meroni, Andrea
    Haglind, Fredrik
    ENERGIES, 2017, 10 (04)
  • [9] Design and performance analysis of a novel Transcritical Regenerative Series Two stage Organic Rankine Cycle for dual source waste heat recovery
    Surendran, Anandu
    Seshadri, Satyanarayanan
    ENERGY, 2020, 203
  • [10] Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery
    Yang, Fubin
    Cho, Heejin
    Zhang, Hongguang
    Zhang, Jian
    APPLIED ENERGY, 2017, 205 : 1100 - 1118