Laser-Induced Ion Formation and Electron Emission from a Nanostructured Gold Surface at Laser Fluence below the Threshold for Plasma Formation

被引:3
作者
Pento, Andrey [1 ]
Kuzmin, Ilya [2 ]
Kozlovskiy, Viacheslav [3 ]
Li, Lei [4 ,5 ]
Laptinskaya, Polina [1 ]
Simanovsky, Yaroslav [1 ]
Sartakov, Boris [1 ]
Nikiforov, Sergey [1 ]
机构
[1] Russian Acad Sci, Prokhorov Gen Phys Inst, Moscow 119991, Russia
[2] Russian Acad Sci, Vernadsky Inst Geochem & Analyt Chem, Moscow 119991, Russia
[3] Russian Acad Sci, NN Semenov Fed Res Ctr Chem Phys, Chernogolovka Branch, Chernogolovka 142432, Moscow Region, Russia
[4] Jinan Univ, Inst Mass Spectrometry & Atmospher Environm, Guangzhou 510632, Peoples R China
[5] Guangdong Prov Engn Res Ctr Online Source Apportio, Guangzhou 510632, Peoples R China
关键词
gold nanoparticles; laser mass spectrometry; laser-induced nanostructures; THERMODYNAMIC PROPERTIES; DESORPTION IONIZATION; OPTICAL-PROPERTIES; SIZE-REDUCTION; CLUSTER IONS; NANOPARTICLES; ABLATION; FEMTOSECOND; METALS; SILVER;
D O I
10.3390/nano13030600
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The laser formation of positive and negative ions on a nanostructured metal surface is observed at laser fluence below the plasma formation threshold. The laser radiation energy dependences of the yield of positive and negative Au ions and charged clusters as well as electrons from the laser-induced nanostructures on the surface of gold are obtained at laser fluence below the plasma formation threshold using a pulsed laser with a wavelength of 355 nm and a pulse duration of 0.37 ns. It is shown that the ratio of the signals of positive and negative ions is constant over the entire range of the laser radiation energies, while the ion signal dependence on the laser radiation energy is described by a power function with an exponent of 9. The role of gold nanoparticles with a size of less than 5 nm in the formation of Au ions and charged Au clusters is discussed.
引用
收藏
页数:16
相关论文
共 48 条
[1]   Nanoparticle-based surface assisted laser desorption ionization mass spectrometry: a review [J].
Abdelhamid, Hani Nasser .
MICROCHIMICA ACTA, 2019, 186 (10)
[2]   LASER-ABLATION IONIZATION TECHNIQUE FOR TRACE-ELEMENT ANALYSIS [J].
ALIMPIEV, SS ;
BELOV, ME ;
NIKIFOROV, SM .
ANALYTICAL CHEMISTRY, 1993, 65 (22) :3194-3198
[3]   Thermodynamic Properties of Gold [J].
Arblaster, J. W. .
JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION, 2016, 37 (02) :229-245
[4]   On the coalescence of gold nanoparticles [J].
Arcidiacono, S ;
Bieri, NR ;
Poulikakos, D ;
Grigoropoulos, CP .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2004, 30 (7-8) :979-994
[5]   Formation of nanostructures under femtosecond laser ablation of metals [J].
Ashitkov, S. I. ;
Romashevskii, S. A. ;
Komarov, P. S. ;
Burmistrov, A. A. ;
Zhakhovskii, V. V. ;
Inogamov, N. A. ;
Agranat, M. B. .
QUANTUM ELECTRONICS, 2015, 45 (06) :547-550
[6]   OPTICAL-PROPERTIES OF AU - SAMPLE EFFECTS [J].
ASPNES, DE ;
KINSBRON, E ;
BACON, DD .
PHYSICAL REVIEW B, 1980, 21 (08) :3290-3299
[7]   DIELECTRIC FUNCTIONS AND OPTICAL-PARAMETERS OF SI, GE, GAP, GAAS, GASB, INP, INAS, AND INSB FROM 1.5 TO 6.0 EV [J].
ASPNES, DE ;
STUDNA, AA .
PHYSICAL REVIEW B, 1983, 27 (02) :985-1009
[8]   Intensity-resolved IR multiple photon ionization and fragmentation of C60 [J].
Bakker, Joost M. ;
Lapoutre, Vivike J. F. ;
Redlich, Britta ;
Oomens, Jos ;
Sartakov, Boris G. ;
Fielicke, Andre ;
von Helden, Gert ;
Meijer, Gerard ;
van der Meer, Alexander F. G. .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (07)
[9]   First-principles investigation of electrochemical properties of gold nanoparticles [J].
Batista, Ronaldo J. C. ;
Mazzoni, Mario S. C. ;
Chacham, H. .
NANOTECHNOLOGY, 2010, 21 (06)
[10]   Metal nanoparticles generated by laser ablation [J].
Becker, MF ;
Brock, JR ;
Cai, H ;
Henneke, DE ;
Keto, JW ;
Lee, JY ;
Nichols, WT ;
Glicksman, HD .
NANOSTRUCTURED MATERIALS, 1998, 10 (05) :853-863