Quasi-2D SnO2 Thin Films for Gas Sensors: Chemoresistive Response and Temperature Effect on Adsorption of Analytes

被引:4
作者
Petrunin, Alexander A. [1 ]
Glukhova, Olga E. [1 ,2 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Inst Phys, Astrakhanskaya St 83, Saratov 410012, Russia
[2] IM Sechenov First Moscow State Med Univ, Lab Biomed Nanotechnol, Trubetskaya St 8 2, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
SnO2; thin films; DFT method; chemoresistive response; gas sensors; Langmuir isotherm model; ab initio; adsorption density; SENSING MECHANISM; HOLLOW MICROSPHERES; 110; SURFACE; NANOPARTICLES; OXIDE; GGA;
D O I
10.3390/ma16010438
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We performed in silico calculations of electrical conductivity of quasi-2D SnO2 thin films with a (110) surface-prospect material for sensitive element of gas sensors. Electronic structure, charge transfer and chemoresistive response of quasi-2D SnO2 thin films during adsorption of alcohol molecules (ethanol, methanol, isopropanol and butanol) and ketones (acetone, cyclopentanone and cyclohexanone) were calculated. It was found that the electrical conductivity of quasi-2D SnO2 thin films decreases within 4-15% during adsorption of analytes. The influence of temperature on the concentration of analytes on the surface of quasi-2D SnO2 thin films was explored in dependence analyte's type.
引用
收藏
页数:11
相关论文
共 40 条
[1]   Room temperature gas sensing mechanism of SnO2 towards chloroform: Comparing first principles calculations with sensing experiments [J].
Abokifa, Ahmed A. ;
Haddad, Kelsey ;
Raman, Baranidharan ;
Fortner, John ;
Biswas, Pratim .
APPLIED SURFACE SCIENCE, 2021, 554
[2]   Development of ferromagnetism and formation energetics in 3d TM-doped SnO2: GGA and GGA plus U calculations [J].
Akbar, W. ;
Elahi, I ;
Nazir, S. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2020, 511
[3]   The surface and materials science of tin oxide [J].
Batzill, M ;
Diebold, U .
PROGRESS IN SURFACE SCIENCE, 2005, 79 (2-4) :47-154
[4]   Synthesis and enhanced acetone sensing properties of 3D porous flower-like SnO2 nanostructures [J].
Cheng, L. ;
Ma, S. Y. ;
Wang, T. T. ;
Luo, J. .
MATERIALS LETTERS, 2015, 143 :84-87
[5]  
Datta S., 2005, Quantum Transport: Atom to Transistor, V2nd ed., P217
[6]  
departments.icmab.es, SIESTA WEB PAGE ICMA
[7]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509
[8]   Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional [J].
Ernzerhof, M ;
Scuseria, GE .
JOURNAL OF CHEMICAL PHYSICS, 1999, 110 (11) :5029-5036
[9]   Microstructure and luminescence properties of Co-doped SnO2 nanoparticles synthesized by hydrothermal method [J].
Fang, L. M. ;
Zu, X. T. ;
Li, Z. J. ;
Zhu, S. ;
Liu, C. M. ;
Wang, L. M. ;
Gao, F. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2008, 19 (8-9) :868-874
[10]   Chemoresistive NH3 gas sensor at room temperature based on the carbon gel-TiO2 nanocomposites [J].
Fernandez-Ramos, M. D. ;
Capitan-Vallvey, L. F. ;
Pastrana-Martinez, L. M. ;
Morales-Torres, S. ;
Maldonado-Hodar, F. J. .
SENSORS AND ACTUATORS B-CHEMICAL, 2022, 368