On the solvability of an initial-boundary value problem for a non-linear fractional diffusion equation

被引:1
|
作者
Aribas, Ozge [1 ]
Golgeleyen, Ismet [1 ]
Yildiz, Mustafa [1 ]
机构
[1] Zonguldak Bulent Ecevit Univ, Fac Sci, Dept Math, TR-67100 Zonguldak, Turkiye
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 03期
关键词
solvability; non-linear fractional diffusion equation; initial-boundary value problem; eigenfunction expansions; Banach fixed point theorem;
D O I
10.3934/math.2023273
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider an initial-boundary value problem for a non-linear fractional diffusion equation on a bounded domain. The fractional derivative is defined in Caputo's sense with respect to the time variable and represents the case of sub-diffusion. Also, the equation involves a second order symmetric uniformly elliptic operator with time-independent coefficients. These initial-boundary value problems arise in applied sciences such as mathematical physics, fluid mechanics, mathematical biology and engineering. By using eigenfunction expansions and Banach fixed point theorem, we establish the existence, uniqueness and regularity properties of the solution of the problem.
引用
收藏
页码:5432 / 5444
页数:13
相关论文
共 50 条