Is every pseudo-orbit of some homeomorphism near an exact orbit of a nearby homeomorphism?

被引:0
作者
Bernardi, Olga [1 ]
Florio, Anna [2 ]
Wiseman, Jim [3 ]
机构
[1] Univ Padua, Dipartimento Matemat Tullio Levi Civita, Via Trieste 63, I-35121 Padua, Italy
[2] Univ Paris 09, Ceremade, Pl Marechal de Lattre de Tassigny, F-75775 Paris, France
[3] Agnes Scott Coll, Dept Math, Decatur, GA 30030 USA
来源
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA | 2023年 / 16卷 / 02期
关键词
CLOSING LEMMA; APPROXIMATE;
D O I
10.1007/s40574-022-00334-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a relaxed notion of shadowing. In particular, for a homeomorphism f on a metric space, we ask whether every approximate orbit is near some actual orbit of some nearby system. We distinguish the cases where the nearby homeomorphism is close or arbitrarily close to f. We prove the relations between these notions and ordinary shadowing and present various examples. We finally discuss an application, a C-0-closing lemma for chain recurrent points of a homeomorphism on a topological manifold, not necessarily compact. This result leads to a characterization of explosion phenomena for various recurrent sets on such manifolds.
引用
收藏
页码:153 / 162
页数:10
相关论文
共 29 条
  • [1] Akin E., 1993, The General Topology of Dynamical Systems, V1
  • [2] [Anonymous], 1975, LECT NOTEMATH
  • [3] Anosov D. V., 1967, Tr. Mat. Inst. Steklova, V90, P1
  • [4] Aoki N., 1994, Topological theory of dynamical systems: recent advances, V52
  • [5] The Generalized Recurrent Set, Explosions and Lyapunov Functions
    Bernardi, Olga
    Florio, Anna
    Wiseman, Jim
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (04) : 1797 - 1817
  • [6] BLOCK L, 1985, ERGOD THEOR DYN SYST, V5, P321
  • [7] Bonatti C., 2000, C. R. Acad. Sci. Paris Ser. I Math., V330, P587
  • [8] Chain transitivity and variations of the shadowing property
    Brian, William R.
    Meddaugh, Jonathan
    Raines, Brian E.
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2015, 35 : 2044 - 2052
  • [9] Choi S.-K., 1996, J CHUNGCHEONG MATH S, V9
  • [10] Conley C., 1978, ISOLATED INVARIANT S, V38, DOI [10.1090/cbms/038, DOI 10.1090/CBMS/038]