Magnetic cochains Laplacians and their essential self-adjointness

被引:0
作者
Baalal, Azeddine [1 ]
Hatim, Khalid [1 ]
机构
[1] Univ Hassan II Casablanca, Fac Sci Ain Chock, Dept Math & Informat, Lab Math Fondament & Appl, Casablanca, Morocco
关键词
Magnetic weighted 2-simplicial complex; magnetic cochains; magnetic cochains Laplacians; essential self-adjointness; Stieltjes vectors; OPERATORS;
D O I
10.1142/S1793830922501233
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the notion of oriented triangular faces F, the notion of edges potential P-E and the notion of triangular faces potential P-F in a connected oriented locally finite graph (V, E) in order to construct a new framework that's we call the magnetic weighted 2-simplicial complex M = (V, E, F, P-E, P-F). On this new magnetic weighted framework, we introduce the magnetic 0-cochains set, the magnetic 1-cochains set, the magnetic 2-cochains set and the magnetic cochains set. After that, we construct the magnetic 0-cochains Laplacian, the magnetic 1-cochains Laplacian, the magnetic 2-cochains Laplacian and the magnetic cochains Laplacian. Finally, we ensure essential self-adjointness for our new magnetic cochains Laplacians using the Stieltjes vectors.
引用
收藏
页数:18
相关论文
共 13 条
  • [1] The Gauss-Bonnet operator of an infinite graph
    Anne, Colette
    Torki-Hamza, Nabila
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2015, 5 (02) : 137 - 159
  • [2] Chernoff P.R., 1973, J FUNCT ANAL, V12, P401, DOI [DOI 10.1016/0022-1236(73)90003-7, 10.1016/0022-1236(73)90003-7]
  • [3] Colin de Verdiere Y, 1998, SPECTRES GRAPHES
  • [4] Essential Self-adjointness for Combinatorial Schrodinger Operators II-Metrically non Complete Graphs
    de Verdiere, Yves Colin
    Torki-Hamza, Nabila
    Truc, Francoise
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2011, 14 (01) : 21 - 38
  • [5] Ferrario DL, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-7236-1
  • [6] Grigoryan A., 2018, AMS University Lecture Series, V71
  • [7] Spectra of combinatorial Laplace operators on simplicial complexes
    Horak, Danijela
    Jost, Juergen
    [J]. ADVANCES IN MATHEMATICS, 2013, 244 : 303 - 336
  • [8] Masamune J, 2009, CONTEMP MATH, V484, P103
  • [9] Masson D., 1972, J FUNCT ANAL, V10, P19, DOI [DOI 10.1016/0022-1236(72)90055-9, 372673]
  • [10] A Sears-type self-adjointness result for discrete magnetic Schrodinger operators
    Milatovic, Ognjen
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 396 (02) : 801 - 809