Constructing Br-Doped Li10SnP2S12-Based All-Solid-State Batteries with Superior Performances

被引:82
作者
Luo, Qiyue [1 ,2 ]
Ming, Liang [1 ,2 ]
Zhang, Dong [3 ,4 ]
Wei, Chaochao [1 ]
Wu, Zhongkai [1 ]
Jiang, Ziling [1 ]
Liu, Chen [1 ]
Liu, Shiyu [5 ]
Cao, Kecheng [3 ,4 ]
Zhang, Long [6 ]
Yu, Chuang [1 ]
Cheng, Shijie [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, State Key Lab Adv Electromagnet Engn & Technol, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Wuhan 430074, Peoples R China
[3] Shanghai Tech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[4] Shanghai Tech Univ, Shanghai Key Lab High Resolut Electron Microscopy, Shanghai 201210, Peoples R China
[5] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan, Peoples R China
[6] Fujian Normal Univ, Coll Phys & Energy, Fuzhou 350117, Peoples R China
来源
ENERGY MATERIAL ADVANCES | 2023年 / 4卷
关键词
IONIC-CONDUCTIVITY; INTERFACES; STABILITY;
D O I
10.34133/energymatadv.0065
中图分类号
O59 [应用物理学];
学科分类号
摘要
Ionic conductivity and electro/chemical compatibility of Li10SnP2S12 electrolytes play crucial roles in achieving superior electrochemical performances of the corresponding solid-state batteries. However, the relatively low Li-ion conductivity and poor stability of Li10SnP2S12 toward high-voltage layered oxide cathodes limit its applications. Here, a Br-substituted strategy has been applied to promote Li-ion conductivity. The optimal composition of Li9.9SnP2S11.9Br0.1 delivers high conductivity up to 6.0 mS cm-1. 7Li static spin-lattice relaxation (T1) nuclear magnetic resonance (NMR) and density functional theory simulation are combined to unravel the improvement of Li-ion diffusion mechanism for the modified electrolytes. To mitigate the interfacial stability between the Li9.9SnP2S11.9Br0.1 electrolyte and the bare LiNi0.7Co0.1Mn0.2O2 cathode, introducing Li2ZrO3 coating layer and Li3InCl6 isolating layer strategies has been employed to fabricate all-solid-state lithium batteries with excellent electrochemical performances. The Li3InClsLiNi0.7Co0.1Mn0.2O2/Li3InCl6/Li9.9SnP2S11.9Br0.1/Li-In battery delivers much higher discharge capacities and fast capacity degradations at different charge/discharge C rates, while the Li2ZrO3@ LiNi0.7Co0.1Mn0.2O2/Li9.9SnP2S11.9Br0.1/Li-In battery shows slightly lower discharge capacities at the same C rates and superior cycling performances. Multiple characterization methods are conducted to reveal the differences of battery performance. The poor electrochemical performance of the latter battery configuration is associated with the interfacial instability between the Li3InCl6 electrolyte and the Li9.9SnP2S11.9Br0.1 electrolyte. This work offers an effective strategy to constructing Li10SnP2S12based all-solid-state lithium batteries with high capacities and superior cyclabilities.
引用
收藏
页数:13
相关论文
共 58 条
[1]   Fast Lithium Ion Conduction in Li2SnS3: Synthesis, Physicochemical Characterization, and Electronic Structure [J].
Brant, Jacilynn A. ;
Massi, Danielle M. ;
Holzwarth, N. A. W. ;
MacNeil, Joseph H. ;
Douvalis, Alexios P. ;
Bakas, Thomas ;
Martin, Steve W. ;
Gross, Michael D. ;
Aitken, Jennifer A. .
CHEMISTRY OF MATERIALS, 2015, 27 (01) :189-196
[2]   Li10SnP2S12: An Affordable Lithium Superionic Conductor [J].
Bron, Philipp ;
Johansson, Sebastian ;
Zick, Klaus ;
auf der Guenne, Joern Schmedt ;
Dehnen, Stefanie ;
Roling, Bernhard .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (42) :15694-15697
[3]   Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application [J].
Chen, Shaojie ;
Xie, Dongjiu ;
Liu, Gaozhan ;
Mwizerwa, Jean Pierre ;
Zhang, Qiang ;
Zhao, Yanran ;
Xu, Xiaoxiong ;
Yao, Xiayin .
ENERGY STORAGE MATERIALS, 2018, 14 :58-74
[4]   Unraveling Electrochemical Stability and Reversible Redox of Y-Doped Li2ZrCl6 Solid Electrolytes [J].
Chen, Shuai ;
Yu, Chuang ;
Wei, Chaochao ;
Jiang, Ziling ;
Zhang, Ziqi ;
Peng, Linfeng ;
Cheng, Shijie ;
Xie, Jia .
ENERGY MATERIAL ADVANCES, 2023, 4
[5]   Lithium confinement and dynamics in hexagonal and monoclinic tungsten oxide nanocrystals: a 7Li solid state NMR study [J].
Doeren, Rene ;
Panthoefer, Martin ;
Praedel, Leon ;
Tremel, Wolfgang ;
Mondeshki, Mihail .
NANOSCALE, 2022, 14 (41) :15348-15363
[6]   Formation of Stable Interphase of Polymer-in-Salt Electrolyte in All-Solid-State Lithium Batteries [J].
Gao, Hongcai ;
Grundish, Nicholas S. ;
Zhao, Yongjie ;
Zhou, Aijun ;
Goodenough, John B. .
ENERGY MATERIAL ADVANCES, 2021, 2021
[7]   Sb- and O-Cosubstituted Li10SnP2S12 with High Electrochemical and Air Stability for All-Solid-State Lithium Batteries [J].
Gao, Jing ;
Sun, Xiaolin ;
Wang, Cheng ;
Zhang, Yuan ;
Yang, Li ;
Song, Depeng ;
Wu, Yue ;
Yang, Zewen ;
Ohsaka, Takeo ;
Matsumotoc, Futoshi ;
Wu, Jianfei .
CHEMELECTROCHEM, 2022, 9 (12)
[8]   A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J].
Grimme, Stefan ;
Antony, Jens ;
Ehrlich, Stephan ;
Krieg, Helge .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
[9]   20 μm-Thick Li6.4La3Zr1.4Ta0.6O12-Based Flexible Solid Electrolytes for All-Solid-State Lithium Batteries [J].
Guo, Qingya ;
Xu, Fanglin ;
Shen, Lin ;
Deng, Shungui ;
Wang, Zhiyan ;
Li, Mengqi ;
Yao, Xiayin .
ENERGY MATERIAL ADVANCES, 2022, 2022
[10]   Interfacial Challenges and Strategies toward Practical Sulfide-Based Solid-State Lithium Batteries [J].
Guo, Ruiql ;
Zhang, Kun ;
Zhao, Wenbin ;
Hu, Zhifan ;
Li, Shuqiang ;
Zhong, Yuxi ;
Yong, Rong ;
Wang, Xinran ;
Wang, Jiantao ;
Wu, Chuan ;
Bai, Ying .
ENERGY MATERIAL ADVANCES, 2023, 4