Morphogens enable interacting supracellular phases that generate organ architecture

被引:29
作者
Yang, Sichen [1 ]
Palmquist, Karl H. [1 ]
Nathan, Levy [1 ]
Pfeifer, Charlotte R. [1 ]
Schultheiss, Paula J. [2 ,3 ]
Sharma, Anurag [4 ]
Kam, Lance C. [2 ,3 ]
Miller, Pearson W. [5 ]
Shyer, Amy E. [1 ]
Rodrigues, Alan R. [1 ]
机构
[1] Rockefeller Univ, Lab Morphogenesis, New York, NY 10065 USA
[2] Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA
[3] Columbia Univ, Dept Med, New York, NY 10032 USA
[4] Rockefeller Univ, Electron Microscopy Resource Ctr, New York, NY 10065 USA
[5] Flatiron Inst, Ctr Computat Biol, New York, NY 10010 USA
关键词
EMBRYONIC-TISSUES; CELL; BMPS; GRADIENT; PATTERN; MODELS; GROWTH; ENERGY; ROLES;
D O I
10.1126/science.adg5579
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
During vertebrate organogenesis, increases in morphological complexity are tightly coupled to morphogen expression. In this work, we studied how morphogens influence self-organizing processes at the collective or "supra"-cellular scale in avian skin. We made physical measurements across length scales, which revealed morphogen-enabled material property differences that were amplified at supracellular scales in comparison to cellular scales. At the supracellular scale, we found that fibroblast growth factor (FGF) promoted "solidification" of tissues, whereas bone morphogenetic protein (BMP) promoted fluidity and enhanced mechanical activity. Together, these effects created basement membrane-less compartments within mesenchymal tissue that were mechanically primed to drive avian skin tissue budding. Understanding this multiscale process requires the ability to distinguish between proximal effects of morphogens that occur at the cellular scale and their functional effects, which emerge at the supracellular scale.
引用
收藏
页数:16
相关论文
共 80 条
[1]  
Alberch P., 1982, EVOL DEV, P313, DOI DOI 10.1007/978-3-642-45532-2_15
[2]   A User's Guide for Phase Separation Assays with Purified Proteins [J].
Alberti, Simon ;
Saha, Shambaditya ;
Woodruff, Jeffrey B. ;
Franzmann, Titus M. ;
Wang, Jie ;
Hyman, Anthony A. .
JOURNAL OF MOLECULAR BIOLOGY, 2018, 430 (23) :4806-4820
[3]   Diffuse-interface methods in fluid mechanics [J].
Anderson, DM ;
McFadden, GB ;
Wheeler, AA .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :139-165
[4]   Investigating the nature of active forces in tissues reveals how contractile cells can form extensile monolayers [J].
Balasubramaniam, Lakshmi ;
Doostmohammadi, Amin ;
Saw, Thuan Beng ;
Narayana, Gautham Hari Narayana Sankara ;
Mueller, Romain ;
Dang, Tien ;
Thomas, Minnah ;
Gupta, Shafali ;
Sonam, Surabhi ;
Yap, Alpha S. ;
Toyama, Yusuke ;
Mege, Rene-Marc ;
Yeomans, Julia M. ;
Ladoux, Benoit .
NATURE MATERIALS, 2021, 20 (08) :1156-+
[5]   A random cell motility gradient downstream of FGF controls elongation of an amniote embryo [J].
Benazeraf, Bertrand ;
Francois, Paul ;
Baker, Ruth E. ;
Denans, Nicolas ;
Little, Charles D. ;
Pourquie, Olivier .
NATURE, 2010, 466 (7303) :248-252
[6]   Motility-Driven Glass and Jamming Transitions in Biological Tissues [J].
Bi, Dapeng ;
Yang, Xingbo ;
Marchetti, M. Cristina ;
Manning, M. Lisa .
PHYSICAL REVIEW X, 2016, 6 (02)
[7]   Hair follicle dermal condensation forms via Fgf20 primed cell cycle exit, cell motility, and aggregation [J].
Biggs, Leah C. ;
Makela, Otto J. M. ;
Myllymaki, Satu-Marja ;
Das Roy, Rishi ;
Narhi, Katja ;
Pispa, Johanna ;
Mustonen, Tuija ;
Mikkola, Marja L. .
ELIFE, 2018, 7
[8]   Dedalus: A flexible framework for numerical simulations with spectral methods [J].
Burns, Keaton J. ;
Vasil, Geoffrey M. ;
Oishi, Jeffrey S. ;
Lecoanet, Daniel ;
Brown, Benjamin P. .
PHYSICAL REVIEW RESEARCH, 2020, 2 (02)
[9]   Traction fields, moments, and strain energy that cells exert on their surroundings [J].
Butler, JP ;
Tolic-Norrelykke, IM ;
Fabry, B ;
Fredberg, JJ .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2002, 282 (03) :C595-C605
[10]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267