Polygenic risk score model for renal cell carcinoma in the Korean population and relationship with lifestyle-associated factors

被引:1
作者
Hong, Joo Young [1 ]
Han, Jang Hee [2 ,3 ]
Jeong, Seung Hwan [2 ,3 ]
Kwak, Cheol [2 ,3 ]
Kim, Hyeon Hoe [2 ,3 ,4 ]
Jeong, Chang Wook [2 ,3 ]
机构
[1] Seoul Natl Univ Hosp, Biomed Res Inst, Seoul, South Korea
[2] Seoul Natl Univ Hosp, Dept Urol, Seoul, South Korea
[3] Seoul Natl Univ, Coll Med, Dept Urol, Seoul, South Korea
[4] Myongji Hosp, Dept Urol, Goyang, Gyeonggi Do, South Korea
关键词
Polygenic risk score; Genome-wide association study; Renal cell carcinoma; Korean population; Non-coding variant; Epigenetics; Lifestyle-associated factor; CANCER; PATHWAY; EPIDEMIOLOGY;
D O I
10.1186/s12864-024-09974-w
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundThe polygenic risk score (PRS) is used to predict the risk of developing common complex diseases or cancers using genetic markers. Although PRS is used in clinical practice to predict breast cancer risk, it is more accurate for Europeans than for non-Europeans because of the sample size of training genome-wide association studies (GWAS). To address this disparity, we constructed a PRS model for predicting the risk of renal cell carcinoma (RCC) in the Korean population.ResultsUsing GWAS analysis, we identified 43 Korean-specific variants and calculated the PRS. Subsequent to plotting receiver operating characteristic (ROC) curves, we selected the 31 best-performing variants to construct an optimal PRS model. The resultant PRS model with 31 variants demonstrated a prediction rate of 77.4%. The pathway analysis indicated that the identified non-coding variants are involved in regulating the expression of genes related to cancer initiation and progression. Notably, favorable lifestyle habits, such as avoiding tobacco and alcohol, mitigated the risk of RCC across PRS strata expressing genetic risk.ConclusionA Korean-specific PRS model was established to predict the risk of RCC in the underrepresented Korean population. Our findings suggest that lifestyle-associated factors influencing RCC risk are associated with acquired risk factors indirectly through epigenetic modification, even among individuals in the higher PRS category.
引用
收藏
页数:11
相关论文
共 55 条
[1]   The BAF complex in development and disease [J].
Alfert, Amelie ;
Moreno, Natalia ;
Kerl, Kornelius .
EPIGENETICS & CHROMATIN, 2019, 12 (1)
[2]   Genetic Factors, Adherence to Healthy Lifestyle Behavior, and Risk of Invasive Breast Cancer Among Women in the UK Biobank [J].
Arthur, Rhonda S. ;
Wang, Tao ;
Xue, Xiaonan ;
Kamensky, Victor ;
Rohan, Thomas E. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2020, 112 (09) :893-901
[3]   Lifestyle and Clinical Factors in a Nationwide Stage III and IV Renal Cell Carcinoma Study [J].
Azawi, Nessn ;
Ebbestad, Freja Ejlebaek ;
Nadler, Naomi ;
Mosholt, Karina Sif Soendergaard ;
Axelsen, Sofie Staal ;
Geertsen, Louise ;
Christensen, Jane ;
Jensen, Niels Viggo ;
Fristrup, Niels ;
Lund, Lars ;
Donskov, Frede ;
Dalton, Susanne Oksbjerg .
CANCERS, 2023, 15 (18)
[4]   Notch signalling: a simple pathway becomes complex [J].
Bray, Sarah J. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2006, 7 (09) :678-689
[5]   Healthy Lifestyle Factors Associated With Lower Risk of Colorectal Cancer Irrespective of Genetic Risk [J].
Carr, Prudence R. ;
Weigl, Korbinian ;
Jansen, Lina ;
Walter, Viola ;
Erben, Vanessa ;
Chang-Claude, Jenny ;
Brenner, Hermann ;
Hoffmeister, Michael .
GASTROENTEROLOGY, 2018, 155 (06) :1805-+
[6]   Convergent Evidence That ZNF804A Is a Regulator of Pre-messenger RNA Processing and Gene Expression [J].
Chapman, Ria M. ;
Tinsley, Caroline L. ;
Hill, Matthew J. ;
Forrest, Marc P. ;
Tansey, Katherine E. ;
Pardinas, Antonio F. ;
Rees, Elliott ;
Doyle, A. Michelle ;
Wilkinson, Lawrence S. ;
Owen, Michael J. ;
O'Donovan, Michael C. ;
Blake, Derek J. .
SCHIZOPHRENIA BULLETIN, 2019, 45 (06) :1267-1278
[7]   Tutorial: a guide to performing polygenic risk score analyses [J].
Choi, Shing Wan ;
Mak, Timothy Shin-Heng ;
O'Reilly, Paul F. .
NATURE PROTOCOLS, 2020, 15 (09) :2759-2772
[8]   Calculating Polygenic Risk Scores (PRS) in UK Biobank: A Practical Guide for Epidemiologists [J].
Collister, Jennifer A. ;
Liu, Xiaonan ;
Clifton, Lei .
FRONTIERS IN GENETICS, 2022, 13
[9]   Next-generation genotype imputation service and methods [J].
Das, Sayantan ;
Forer, Lukas ;
Schoenherr, Sebastian ;
Sidore, Carlo ;
Locke, Adam E. ;
Kwong, Alan ;
Vrieze, Scott I. ;
Chew, Emily Y. ;
Levy, Shawn ;
McGue, Matt ;
Schlessinger, David ;
Stambolian, Dwight ;
Loh, Po-Ru ;
Iacono, William G. ;
Swaroop, Anand ;
Scott, Laura J. ;
Cucca, Francesco ;
Kronenberg, Florian ;
Boehnke, Michael ;
Abecasis, Goncalo R. ;
Fuchsberger, Christian .
NATURE GENETICS, 2016, 48 (10) :1284-1287
[10]   Regulation of mTORC1 by PI3K signaling [J].
Dibble, Christian C. ;
Cantley, Lewis C. .
TRENDS IN CELL BIOLOGY, 2015, 25 (09) :545-555