Existence and Concentration of Solutions for a 1-Biharmonic Choquard Equation with Steep Potential Well in RN

被引:0
作者
Tao, Huo [1 ,2 ]
Li, Lin [1 ,2 ]
Winkert, Patrick [3 ]
机构
[1] Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
[2] Chongqing Technol & Business Univ, Chongqing Key Lab Econ & Social Applicat Stat, Chongqing 400067, Peoples R China
[3] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
关键词
1-Biharmonic operator; Choquard equation; Concentration behavior; Ground state solution; Nehari manifold; BOUNDED VARIATION SOLUTIONS; POSITIVE SOLUTIONS; CRITICAL GROWTH; MULTIPLICITY; FUNCTIONALS;
D O I
10.1007/s12220-023-01341-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the existence and concentration of solutions for the following 1-biharmonic Choquard equation with steep potential well {Delta(2)(1) - Delta(1)u + (1 + lambda V (x)) u/vertical bar u vertical bar = (I-mu * F(u)) f (u) in R-N, u is an element of BL(R-N), where N >= 3, lambda > 0 is a positive parameter, V : R-N -> R, f : R -> R are continuous functions verifying further conditions, Omega = int(V-1({0})) has nonempty interior and I mu : R-N -> R is the Riesz potential of order mu is an element of (N -1, N), For lambda > 0 large enough, we prove the existence of a nontrivial solution u(lambda) of the problem above via variational methods and the concentration behavior of u(lambda) which is explored on the set Omega.
引用
收藏
页数:27
相关论文
共 34 条
[1]   Multiplicity of positive solutions for a class of problems with exponential critical growth in R2 [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (06) :1502-1520
[2]  
Alves CO, 2020, B BRAZ MATH SOC, V51, P863, DOI 10.1007/s00574-019-00179-4
[3]   Multi-bump solutions for Choquard equation with deepening potential well [J].
Alves, Claudianor O. ;
Nobrega, Alannio B. ;
Yang, Minbo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (03)
[4]   Multiplicity and concentration of solutions for a quasilinear Choquard equation [J].
Alves, Claudianor O. ;
Yang, Minbo .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (06)
[5]   MULTIPLICITY OF POSITIVE SOLUTIONS FOR A CLASS OF PROBLEMS WITH CRITICAL GROWTH IN RN [J].
Alves, Claudianor O. ;
de Morais Filho, Daniel C. ;
Souto, Marco A. S. .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2009, 52 :1-21
[6]   Some existence and uniqueness results for logistic Choquard equations [J].
Anthal, G. C. ;
Giacomoni, J. ;
Sreenadh, K. .
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (03) :997-1034
[7]   THE EULER EQUATION FOR FUNCTIONALS WITH LINEAR GROWTH [J].
ANZELLOTTI, G .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 290 (02) :483-501
[8]   A singular eigenvalue problem for the Dirichlet (p, q)-Laplacian [J].
Bai, Yunru ;
Papageorgiou, Nikolaos S. ;
Zeng, Shengda .
MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (01) :325-345
[9]   Some existence results of bounded variation solutions to 1-biharmonic problems [J].
Barile, Sara ;
Pimenta, Marcos T. O. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (02) :726-743
[10]   Nonlinear Schrodinger equations with steep potential well [J].
Bartsch, T ;
Pankov, A ;
Wang, ZQ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :549-569