Existence and Concentration of Solutions for a 1-Biharmonic Choquard Equation with Steep Potential Well in RN
被引:0
作者:
Tao, Huo
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
Chongqing Technol & Business Univ, Chongqing Key Lab Econ & Social Applicat Stat, Chongqing 400067, Peoples R ChinaChongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
Tao, Huo
[1
,2
]
Li, Lin
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
Chongqing Technol & Business Univ, Chongqing Key Lab Econ & Social Applicat Stat, Chongqing 400067, Peoples R ChinaChongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
Li, Lin
[1
,2
]
Winkert, Patrick
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, GermanyChongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
Winkert, Patrick
[3
]
机构:
[1] Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
[2] Chongqing Technol & Business Univ, Chongqing Key Lab Econ & Social Applicat Stat, Chongqing 400067, Peoples R China
In this paper, we investigate the existence and concentration of solutions for the following 1-biharmonic Choquard equation with steep potential well {Delta(2)(1) - Delta(1)u + (1 + lambda V (x)) u/vertical bar u vertical bar = (I-mu * F(u)) f (u) in R-N, u is an element of BL(R-N), where N >= 3, lambda > 0 is a positive parameter, V : R-N -> R, f : R -> R are continuous functions verifying further conditions, Omega = int(V-1({0})) has nonempty interior and I mu : R-N -> R is the Riesz potential of order mu is an element of (N -1, N), For lambda > 0 large enough, we prove the existence of a nontrivial solution u(lambda) of the problem above via variational methods and the concentration behavior of u(lambda) which is explored on the set Omega.
机构:
Univ Eatadual Paulista UNESP, Fac Ciencias & Tecnol, Dept Matemat & Computacao, BR-19060900 Presidente Prudente, SP, BrazilUniv Bari Aldo Moro, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
机构:
Univ Eatadual Paulista UNESP, Fac Ciencias & Tecnol, Dept Matemat & Computacao, BR-19060900 Presidente Prudente, SP, BrazilUniv Bari Aldo Moro, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy