Goodness-of-fit tests for the Weibull distribution based on the Laplace transform and Stein's method

被引:1
作者
Ebner, Bruno [1 ]
Fischer, Adrian [2 ]
Henze, Norbert [1 ]
Mayer, Celeste [3 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Stochast, Englerstr 2, D-76133 Karlsruhe, Germany
[2] Univ libre Bruxelles ULB, Campus Plaine-CP 210,Blvd Triomphe,ACC2, B-1050 Brussels, Belgium
[3] Landeskreditbank Baden Wurttemberg Forderbank L Ba, Schlosspl 21, D-76131 Karlsruhe, Germany
关键词
Goodness-of-fit; Weibull distribution; Hilbert-space valued random elements; Contiguous alternatives; EXTREME-VALUE; PARAMETER; STATISTICS;
D O I
10.1007/s10463-023-00873-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose novel goodness-of-fit tests for the Weibull distribution with unknown parameters. These tests are based on an alternative characterizing representation of the Laplace transform related to the density approach in the context of Stein's method. Asymptotic theory of the tests is derived, including the limit null distribution, the behaviour under contiguous alternatives, the validity of the parametric bootstrap procedure, and consistency of the tests against a large class of alternatives. A Monte Carlo simulation study shows the competitiveness of the new procedure. Finally, the procedure is applied to real data examples taken from the materials science.
引用
收藏
页码:1011 / 1038
页数:28
相关论文
共 40 条
  • [1] On Testing the Adequacy of the Inverse Gaussian Distribution
    Allison, James S.
    Betsch, Steffen
    Ebner, Bruno
    Visagie, Jaco
    [J]. MATHEMATICS, 2022, 10 (03)
  • [2] Stein's Method Meets Computational Statistics: A Review of Some Recent Developments
    Anastasiou, Andreas
    Barp, Alessandro
    Briol, Francois-Xavier
    Ebner, Bruno
    Gaunt, Robert E.
    Ghaderinezhad, Fatemeh
    Gorham, Jackson
    Gretton, Arthur
    Ley, Christophe
    Liu, Qiang
    Mackey, Lester
    Oates, Chris J.
    Reinert, Gesine
    Swan, Yvik
    [J]. ENERGY AND BUILDINGS, 2023, 282 : 120 - 139
  • [3] Characterizations of non-normalized discrete probability distributions and their application in statistics
    Betsch, Steffen
    Ebner, Bruno
    Nestmann, Franz
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (01): : 1303 - 1329
  • [4] Minimum Lq-distance estimators for non-normalized parametric models
    Betsch, Steffen
    Ebner, Bruno
    Klar, Bernhard
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (02): : 514 - 548
  • [5] Fixed point characterizations of continuous univariate probability distributions and their applications
    Betsch, Steffen
    Ebner, Bruno
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2021, 73 (01) : 31 - 59
  • [6] A new characterization of the Gamma distribution and associated goodness-of-fit tests
    Betsch, Steffen
    Ebner, Bruno
    [J]. METRIKA, 2019, 82 (07) : 779 - 806
  • [7] Bickel PJ., 2015, Mathematical statistics: Basic ideas and selected topics, volumes I-II package, DOI [10.1201/b20576, DOI 10.1201/B20576]
  • [8] New classes of tests for the Weibull distribution using Stein's method in the presence of random right censoring
    Bothma, E.
    Allison, J. S.
    Visagie, I. J. H.
    [J]. COMPUTATIONAL STATISTICS, 2022, 37 (04) : 1751 - 1770
  • [9] ADAPTIVE SMOOTHING AND DENSITY-BASED TESTS OF MULTIVARIATE NORMALITY
    BOWMAN, AW
    FOSTER, PJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (422) : 529 - 537
  • [10] Using the empirical moment generating function in testing for the Weibull and the type I extreme value distributions
    Cabaña, A
    Quiroz, AJ
    [J]. TEST, 2005, 14 (02) : 417 - 431