Review on Thermal Management of Lithium-Ion Batteries for Electric Vehicles: Advances, Challenges, and Outlook

被引:43
作者
He, Liange [1 ,2 ,3 ]
Gu, Zihan [1 ]
Zhang, Yan [1 ]
Jing, Haodong [1 ]
Li, Pengpai [1 ]
机构
[1] Chongqing Univ Technol, Key Lab Adv Manufacture Technol Automobile Parts, Minist Educ, Chongqing 400054, Peoples R China
[2] Ningbo Shenglong Grp Co Ltd, Ningbo 315104, Peoples R China
[3] Chongqing Energy Technol Res Inst, Chongqing 400054, Peoples R China
关键词
PHASE-CHANGE-MATERIAL; HEAT DISSIPATION CAPABILITY; POWER BATTERY; STRUCTURE OPTIMIZATION; COOLING PERFORMANCE; TEMPERATURE CONTROL; SYSTEM; COMPOSITE; PACK; MODULE;
D O I
10.1021/acs.energyfuels.2c04243
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Due to strict regulations and the requirement to reduce greenhouse gas emissions, electric vehicles (BEVs) are a promising mode of transportation. The lithium battery is the most important power source for an electric vehicle, but its performance and life are greatly restricted by temperature. To ensure the safety of automobile operation and alleviate mileage anxiety, it is urgent to understand the current situation and predict the development and challenge of battery thermal management system. This work reviews the existing thermal management research in five areas, including cooling and heating methods, modeling optimization, control methods, and thermal management system integration for lithium batteries. Battery thermal management types include air-based, liquid-based, PCM-based, heat -pipe-based, and direct cooling. Designing a better battery thermal management system not only needs to be optimized using algorithms on the model but also it uses intelligent algorithms for precise control to achieve safety and reduce energy consumption. This work also reviews the differences in thermal management systems between square and cylindrical batteries and summarizes the development trend of modularity in battery thermal management systems.
引用
收藏
页码:4835 / 4857
页数:23
相关论文
共 214 条
[1]   Battery thermal management systems based on nanofluids for electric vehicles [J].
Abdelkareem, Mohammad Ali ;
Maghrabie, Hussein M. ;
Abo-Khalil, Ahmed G. ;
Adhari, Ohood Hameed Kadhim ;
Sayed, Enas Taha ;
Radwan, Ali ;
Elsaid, Khaled ;
Wilberforce, Tabbi ;
Olabi, A. G. .
JOURNAL OF ENERGY STORAGE, 2022, 50
[2]   Battery thermal management: An optimization study of parallelized conjugate numerical analysis using Cuckoo search and Artificial bee colony algorithm [J].
Afzal, Asif ;
Samee, A. D. Mohammed ;
Jilte, R. D. ;
Islam, Md Tariqul ;
Manokar, A. Muthu ;
Razak, Kaladgi Abdul .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 166
[3]   Experimental and numerical thermal analysis of a lithium-ion battery module based on a novel liquid cooling plate embedded with phase change material [J].
Akbarzadeh, Mohsen ;
Kalogiannis, Theodoros ;
Jin, Lu ;
Karimi, Danial ;
Van Mierlo, Joeri ;
Berecibar, Maitane .
JOURNAL OF ENERGY STORAGE, 2022, 50
[4]   A novel liquid cooling plate concept for thermal management of lithium-ion batteries in electric vehicles [J].
Akbarzadeh, Mohsen ;
Jaguemont, Joris ;
Kalogiannis, Theodoros ;
Karimi, Danial ;
He, Jiacheng ;
Jin, Lu ;
Xie, Peng ;
Mierlo, Joeri Van ;
Berecibar, Maitane .
ENERGY CONVERSION AND MANAGEMENT, 2021, 231
[5]   Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review [J].
Akinlabi, A. Hakeem ;
Solyali, Davut .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 125
[6]   A review of novel thermal management systems for batteries [J].
Al-Zareer, Maan ;
Dincer, Ibrahim ;
Rosen, Marc A. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2018, 42 (10) :3182-3205
[7]   Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles [J].
Al-Zareer, Maan ;
Dincer, Ibrahim ;
Rosen, Marc A. .
JOURNAL OF POWER SOURCES, 2017, 363 :291-303
[8]   Modeling and simulation of a thermal management system for electric vehicles [J].
Alaoui, C ;
Salameh, ZM .
IECON'03: THE 29TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1 - 3, PROCEEDINGS, 2003, :887-890
[9]   A Real-Time Simulink Interfaced Fast-Charging Methodology of Lithium-Ion Batteries under Temperature Feedback with Fuzzy Logic Control [J].
Ali, Muhammad Umair ;
Nengroo, Sarvar Hussain ;
Khan, Muhamad Adil ;
Zeb, Kamran ;
Kamran, Muhammad Ahmad ;
Kim, Hee-Je .
ENERGIES, 2018, 11 (05)
[10]   Load Management of Modular Battery Using Model Predictive Control: Thermal and State-of-Charge Balancing [J].
Altaf, Faisal ;
Egardt, Bo ;
Mardh, Lars Johannesson .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2017, 25 (01) :47-62