Discrete Lotka-Volterra with shift algorithm for computing matrix eigenvalues and singular values

被引:0
作者
Ueda, Asahi [1 ]
Iwasaki, Masashi [2 ]
Nakamura, Yoshimasa [3 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Yoshida Hommachi,Sakyo Ku, Kyoto 6068501, Japan
[2] Kyoto Prefectural Univ, Fac Life & Environm Sci, 1-5 Nakaragi Cho,Sakyo Ku, Kyoto 6068522, Japan
[3] Osaka Seikei Univ, 3-10-62 Aikawa,Higashiyodogawa Ku, Osaka 5330007, Japan
关键词
Discrete Lotka-Volterra system; LR transformation; Shift of origin; Convergence rate; Error analysis; DQDS ALGORITHM; CONVERGENCE; SYSTEM;
D O I
10.1007/s13160-023-00583-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Discrete integrable systems are closely related to numerical linear algebra. An important discrete integrable system is the discrete Lotka-Volterra (dLV) system, which is a time discretization of predator-prey dynamics. Discrete time evolutions of the dLV system correspond to a sequence of LR transformations that generate matrix similarity transformations. Previously, we leveraged this property to design the so-called dLV algorithm for computing eigenvalues and singular values. In this paper, by introducing shifts of origin into the LR transformations, we propose a new shifted algorithm as a version of the dLV algorithm for convergence acceleration. The proposed algorithm is similar to the modified dLV with shift algorithm in that it is based on the LR transformations generated by the dLV system but it has the advantage that it does not require extra auxiliary variables. We present the convergence rate and numerical errors of the proposed algorithm.
引用
收藏
页码:1501 / 1518
页数:18
相关论文
共 17 条
[1]   ON CONVERGENCE OF THE DQDS ALGORITHM FOR SINGULAR VALUE COMPUTATION [J].
Aishima, Kensuke ;
Matsuo, Takayasu ;
Murota, Kazuo ;
Sugihara, Masaaki .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (02) :522-537
[2]   Rigorous proof of cubic convergence for the dqds algorithm for singular values [J].
Aishima, Kensuke ;
Matsuo, Takayasu ;
Murota, Kazuo .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2008, 25 (01) :65-81
[3]   A note on the dqds algorithm with Rutishauser's shift for singular values [J].
Aishima, Kensuke ;
Matsuo, Takayasu ;
Murota, Kazuo .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2011, 28 (02) :251-262
[4]   ACCURATE SINGULAR-VALUES OF BIDIAGONAL MATRICES [J].
DEMMEL, J ;
KAHAN, W .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1990, 11 (05) :873-912
[5]   ACCURATE SINGULAR-VALUES AND DIFFERENTIAL QD-ALGORITHMS [J].
FERNANDO, KV ;
PARLETT, BN .
NUMERISCHE MATHEMATIK, 1994, 67 (02) :191-229
[6]  
HIGHAM N. J., 2002, Accuracy and Stability of Numerical Algorithms, V2nd, DOI 10.1137/1.9780898718027
[7]   DISCRETE ANALOG OF A GENERALIZED TODA EQUATION [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (11) :3785-3791
[8]   CONSERVED QUANTITIES OF A CLASS OF NONLINEAR DIFFERENCE-DIFFERENCE EQUATIONS [J].
HIROTA, R ;
TSUJIMOTO, S .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1995, 64 (09) :3125-3127
[9]   An application of the discrete Lotka-Volterra system with variable step-size to singular value computation [J].
Iwasaki, M ;
Nakamura, Y .
INVERSE PROBLEMS, 2004, 20 (02) :553-563
[10]   On the convergence of a solution of the discrete Lotka-Volterra system [J].
Iwasaki, M ;
Nakamura, Y .
INVERSE PROBLEMS, 2002, 18 (06) :1569-1578