Current and Future Applications of Artificial Intelligence in Cardiac CT

被引:17
作者
Joshi, Mugdha [1 ]
Melo, Diana Patricia [2 ]
Ouyang, David [3 ]
Slomka, Piotr J. [4 ]
Williams, Michelle C. [5 ]
Dey, Damini [6 ]
机构
[1] Stanford Healthcare, Dept Med, Palo Alto, CA USA
[2] Stanford Healthcare, Div Cardiovasc Med, Palo Alto, CA USA
[3] Smidt Heart Inst, Cedars Sinai Med Ctr, Los Angeles, CA USA
[4] Cedars Sinai Med Ctr, Dept Med, Los Angeles, CA USA
[5] Univ Edinburgh, Ctr Cardiovasc Sci, British Heart Fdn, Edinburgh, Scotland
[6] Cedars Sinai Med Ctr, Biomed Imaging Res Inst, 116 N Robertson Blvd, Los Angeles, CA 90048 USA
基金
美国国家卫生研究院; 英国医学研究理事会;
关键词
Artificial intelligence; Machine learning; Cardiovascular CT; Coronary calcium scoring; Coronary CT angiography; CORONARY-ARTERY-DISEASE; AUTOMATED SEGMENTATION; RISK-ASSESSMENT; ANGIOGRAPHY; PREDICTION; ASSOCIATION; MYOCARDIUM; MORTALITY;
D O I
10.1007/s11886-022-01837-8
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose of ReviewIn this review, we aim to summarize state-of-the-art artificial intelligence (AI) approaches applied to cardiovascular CT and their future implications.Recent FindingsRecent studies have shown that deep learning networks can be applied for rapid automated segmentation of coronary plaque from coronary CT angiography, with AI-enabled measurement of total plaque volume predicting future heart attack. AI has also been applied to automate assessment of coronary artery calcium on cardiac and ungated chest CT and to automate the measurement of epicardial fat. Additionally, AI-based prediction models integrating clinical and imaging parameters have been shown to improve prediction of cardiac events compared to traditional risk scores.Artificial intelligence applications have been applied in all aspects of cardiovascular CT - in image acquisition, reconstruction and denoising, segmentation and quantitative analysis, diagnosis and decision assistance and to integrate prognostic risk from clinical data and images. Further incorporation of artificial intelligence in cardiovascular imaging holds important promise to enhance cardiovascular CT as a precision medicine tool.
引用
收藏
页码:109 / 117
页数:9
相关论文
共 56 条
[1]   Non-invasive detection of coronary artery disease in high-risk patients based on the stenosis prediction of separate coronary arteries [J].
Alizadehsani, Roohallah ;
Hosseini, Mohammad Javad ;
Khosravi, Abbas ;
Khozeimeh, Fahime ;
Roshanzamir, Mohamad ;
Sarrafzadegan, Nizal ;
Nahavandi, Saeid .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 162 :119-127
[2]   Diagnostic accuracy and performance of artificial intelligence in measuring left atrial volumes and function on multiphasic CT in patients with atrial fibrillation [J].
Aquino, Gilberto J. ;
Chamberlin, Jordan ;
Yacoub, Basel ;
Kocher, Madison R. ;
Kabakus, Ismail ;
Akkaya, Selcuk ;
Mercer, Megan ;
Waltz, Jeffrey ;
Fiegel, Matthew ;
Leaphart, Nathan ;
Jacob, Athira ;
Gulsun, Mehmet Akif ;
Gilkes, James ;
Stephenson, Joe ;
Sharma, Puneet ;
Sahbaee, Pooyan ;
Schoepf, Joseph ;
Zimmerman, Stefan ;
Field, Michael E. ;
Agha, Ali M. ;
Burt, Jeremy R. .
EUROPEAN RADIOLOGY, 2022, 32 (08) :5256-5264
[3]   Artificial intelligence can detect left ventricular dilatation on contrast-enhanced thoracic computer tomography relative to cardiac magnetic resonance imaging [J].
Asif, Ashar ;
Charters, Pia F. P. ;
Thompson, Charlotte A. S. ;
Komber, Hend M. E., I ;
Hudson, Benjamin J. ;
Rodrigues, Jonathan Carl Luis .
BRITISH JOURNAL OF RADIOLOGY, 2022, 95 (1138)
[4]   Identification and Quantification of Cardiovascular Structures From CCTA An End-to-End, Rapid, Pixel-Wise, Deep-Learning Method [J].
Baskaran, Lohendran ;
Maliakal, Gabriel ;
Al'Aref, Subhi J. ;
Singh, Gurpreet ;
Xu, Zhuoran ;
Michalak, Kelly ;
Dolan, Kristina ;
Gianni, Umberto ;
van Rosendael, Alexander ;
van den Hoogen, Inge ;
Han, Donghee ;
Stuijfzand, Wijnand ;
Pandey, Mohit ;
Lee, Benjamin C. ;
Lin, Fay ;
Pontone, Gianluca ;
Knaapen, Paul ;
Marques, Hugo ;
Bax, Jeroen ;
Berman, Daniel ;
Chang, Hyuk-Jae ;
Shaw, Leslee J. ;
Min, James K. .
JACC-CARDIOVASCULAR IMAGING, 2020, 13 (05) :1163-1171
[5]   Toward the automatic detection of coronary artery calcification in non-contrast computed tomography data [J].
Brunner, Gerd ;
Chittajallu, Deepak R. ;
Kurkure, Uday ;
Kakadiaris, Ioannis A. .
INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2010, 26 (07) :829-838
[6]   Automated Agatston Score Computation in non-ECG Gated CT Scans Using Deep Learning [J].
Cano-Espinosa, Carlos ;
Gonzalez, German ;
Washko, George R. ;
Cazorla, Miguel ;
San Jose Estepar, Ratil .
MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
[7]   Fully automatic segmentation of type B aortic dissection from CTA images enabled by deep learning [J].
Cao, Long ;
Shi, Ruiqiong ;
Ge, Yangyang ;
Xing, Lei ;
Zuo, Panli ;
Jia, Yan ;
Liu, Jie ;
He, Yuan ;
Wang, Xinhao ;
Luan, Shaoliang ;
Chai, Xiangfei ;
Guo, Wei .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 121
[8]   Association of Coronary Artery Calcification and Mortality in the National Lung Screening Trial: A Comparison of Three Scoring Methods [J].
Chiles, Caroline ;
Duan, Fenghai ;
Gladish, Gregory W. ;
Ravenel, James G. ;
Baginski, Scott G. ;
Snyder, Bradley S. ;
DeMello, Sarah ;
Desjardins, Stephanie S. ;
Munden, Reginald F. .
RADIOLOGY, 2015, 276 (01) :82-90
[9]   CT Evaluation by Artificial Intelligence for Atherosclerosis, Stenosis and Vascular Morphology (CLARIFY): A Multi-center, international study [J].
Choi, Andrew D. ;
Marques, Hugo ;
Kumar, Vishak ;
Griffin, William F. ;
Rahban, Habib ;
Karlsberg, Ronald P. ;
Zeman, Robert K. ;
Katz, Richard J. ;
Earls, James P. .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2021, 15 (06) :470-476
[10]   Diagnostic Accuracy of a Machine-Learning Approach to Coronary Computed Tomographic Angiography-Based Fractional Flow Reserve Result From the MACHINE Consortium [J].
Coenen, Adriaan ;
Kim, Young-Hak ;
Kruk, Mariusz ;
Tesche, Christian ;
De Geer, Jakob ;
Kurata, Akira ;
Lubbers, Marisa L. ;
Daemen, Joost ;
Itu, Lucian ;
Rapaka, Saikiran ;
Sharma, Puneet ;
Schwemmer, Chris ;
Persson, Anders ;
Schoepf, U. Joseph ;
Kepka, Cezary ;
Yang, Dong Hyun ;
Nieman, Koen .
CIRCULATION-CARDIOVASCULAR IMAGING, 2018, 11 (06)