Boost piezocatalytic H2O2 production in BiFeO3 by defect engineering enabled dual-channel reaction

被引:13
|
作者
Zeng, Hua [1 ]
Yu, Chengye [1 ]
Liu, Chuanbao [2 ]
Tan, Mengxi [1 ]
Su, Yanjing [1 ]
Qiao, Lijie [1 ]
Bai, Yang [1 ]
机构
[1] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Piezocatalysis; Oxygen vacancy; BiFeO3; HYDROGEN-PEROXIDE PRODUCTION; MOLECULAR-OXYGEN; CARBON NITRIDE; WATER; DEGRADATION; ACTIVATION;
D O I
10.1016/j.mtener.2023.101475
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Piezocatalytic H2O2 production is a promising alternative to the traditional anthraquinone method and direct synthesis, for obtaining desired products in a clean and safe way. In this work, we studied the piezocatalytic behavior of narrow band gap material BiFeO3 and achieved a superior H2O2 generation performance by defect engineering enabled dual-channel reaction. The concentration of oxygen va-cancies (OVs) is adjusted by the hydrothermal process parameters, so that the valence band shifts to a more positive position with more OVs. As the water oxidation reaction is selectively enhanced as its energy barrier is lowered, while the oxygen reduction reaction is basically maintained, i.e. a dual-channel for H2O2 production. Meanwhile, OVs act as the electron capture center to facilitate charge separation, which further improves the reaction activity. Accordingly, the H2O2 yield of BiFeO3 catalyst with suitable OVs concentration reaches 110.07 mmol/g/h in pure water and 342.36 mmol/g/h under sacrificial agent system. This work provides a promising strategy for the development of narrow band gap catalysts for H2O2 production.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] BiFeO3 photocathodes for efficient H2O2 production via charge carrier dynamics engineering
    Zhang, Zemin
    Tan, Bing
    Ma, Wenjun
    Liu, Bo
    Sun, Mengdi
    Cooper, Jason K.
    Han, Weihua
    MATERIALS HORIZONS, 2022, 9 (07) : 1999 - 2006
  • [2] Enhanced Photocatalytic H2O2 Production over Carbon Nitride by Doping and Defect Engineering
    Wu, Shuai
    Yu, Hongtao
    Chen, Shuo
    Quan, Xie
    ACS CATALYSIS, 2020, 10 (24): : 14380 - 14389
  • [3] Bi2O2Se Nanosheets for Efficient Piezocatalytic H2O2 Production
    Li, Shun
    Liu, Xinbo
    Zhang, Xinyue
    Liu, Yong
    CATALYSTS, 2025, 15 (02)
  • [4] Piezocatalytic degradation of organic dyes and production of H2O2 with hydroxyapatite
    Yin, Guofeng
    Fu, Cheng
    Zhang, Feilong
    Wu, Tao
    Hao, Shanhao
    Wang, Chan
    Song, Qijun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 937
  • [5] Efficient piezocatalytic H2O2 production of atomic-level thickness Bi4Ti3O12 nanosheets with surface oxygen vacancy
    Wang, Chunyang
    Chen, Fang
    Hu, Cheng
    Ma, Tianyi
    Zhang, Yihe
    Huang, Hongwei
    CHEMICAL ENGINEERING JOURNAL, 2022, 431
  • [6] Enhancing piezocatalytic H2O2 production through morphology control of graphitic carbon nitride
    Wang, Kai
    Shu, Zhu
    Zhou, Jun
    Zhao, Zhengliang
    Wen, Yuchen
    Sun, Shuxin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 648 : 242 - 250
  • [7] Crystal-Facet-Dependent Piezocatalytic Activity of BiFeO3 Nanosheets for H2 Evolution and Environmental Remediation
    Wang, Xiangge
    Lu, Xiaoxiao
    Zhao, Xiaojing
    Chen, Wen-Jie
    Liu, Yubin
    Pan, Xiaoyang
    Liang, Shijing
    ACS APPLIED NANO MATERIALS, 2024, 7 (10) : 11794 - 11802
  • [8] Bi Nanoparticle/Bi4Ti3O12 Nanosheet/g-C3N4 Nanowire Heterojunction for the Piezocatalytic H2O2 Production
    Xu, Qianxin
    Zhang, Yang
    Lu, Dawei
    Zhang, Kai
    Lu, Meihong
    Liang, Jinzhe
    Qin, Yumei
    ACS APPLIED NANO MATERIALS, 2024, 7 (15) : 17379 - 17390
  • [9] Dual molecules engineered carbon nitride for achieving outstanding photocatalytic H2O2 production
    Wei, Wei
    Zou, Leilei
    Li, Jin
    Hou, Fengming
    Sheng, Zekai
    Li, Yihang
    Guo, Zhipeng
    Wei, Ang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 636 : 537 - 548
  • [10] Carbon modification facilitates piezocatalytic H2O2 production over BiOCl nanosheets: Correlation between piezoresponse and surface reaction
    Zhou, Yuanyi
    Dong, Haojie
    Xu, Zhaofen
    Zha, Qingbing
    Zhu, Mingshan
    Meng, Yu
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 343