An Optimization Method for Load Modulation Trajectories in a Millimeter-Wave GaN MMIC Doherty Power Amplifier Design

被引:7
作者
Chen, Peng [1 ]
Liu, Rui-Jia [2 ]
Yu, Luqi [1 ]
Zhao, Ziming [1 ]
Zhu, Xiao-Wei [1 ]
Hou, Debin [3 ]
Chen, Jixin [1 ,4 ]
Yu, Chao [1 ,4 ]
Hong, Wei [1 ,4 ]
机构
[1] Southeast Univ, State Key Lab Millimeter Wave, Nanjing 210096, Peoples R China
[2] Univ Coll Dublin, Sch Elect & Elect Engn, Dublin 4, Ireland
[3] MiSic Microelect Co Ltd, Nanjing 211100, Peoples R China
[4] Purple Mt Labs, Nanjing 211111, Peoples R China
关键词
Transistors; Modulation; Trajectory; Gallium nitride; Power generation; Power amplifiers; Optimization methods; Doherty power amplifier; gallium nitride; microwave monolithic integrated circuit; optimization method;
D O I
10.1109/TCSII.2023.3296578
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The contribution of this brief is proposing an optimization method for load modulation trajectories of the Carrier and Peaking transistors based on shared load-pull contours. Firstly, theoretical analysis reveals that the load modulation trajectories can be expressed as a function of the back-off coefficient, the combining load and the output power. Taking the modulation interaction into consideration, the proposed method is then implemented in shared load-pull contours to demonstrate the optimization of load modulation trajectories. To validate the proposed method, a 25-26.5 GHz gallium nitride (GaN) microwave monolithic integrated circuit (MMIC) Doherty power amplifier (DPA) is realized by matching with the optimum load modulation trajectories. Measured results show that the DPA achieves saturated PAE higher than 29%, and 6 dB back-off PAE higher than 27%, with a saturated output power higher than 28.9 dBm across the band. To characterize the linearity, the DPA is measured using a 400 MHz modulated signal and digital predistortion (DPD).
引用
收藏
页码:141 / 145
页数:5
相关论文
共 18 条
[1]   A 2428-GHz Doherty Power Amplifier With 4-W Output Power and 32 PAE at 6-dB OPBO in 150-nm GaN Technology [J].
Bao, Mingquan ;
Gustafsson, David ;
Hou, Rui ;
Ouarch, Zineb ;
Chang, Christophe ;
Andersson, Kristoffer .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2021, 31 (06) :752-755
[2]   A Review of Technologies and Design Techniques of Millimeter-Wave Power Amplifiers [J].
Camarchia, Vittorio ;
Quaglia, Roberto ;
Piacibello, Anna ;
Nguyen, Duy P. ;
Wang, Hua ;
Pham, Anh-Vu .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2020, 68 (07) :2957-2983
[3]   Harmonic Suppression of a Three-Stage 25-31-GHz GaN MMIC Power Amplifier Using Elliptic Low-Pass Filtering Matching Network [J].
Chen, Peng ;
Zhu, Xiao-Wei ;
Liu, Rui-Jia ;
Zhao, Ziming ;
Zhang, Lei ;
Yu, Chao ;
Hong, Wei .
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2022, 32 (06) :551-554
[4]   A GaN MMIC Modified Doherty PA With Large Bandwidth and Reconfigurable Efficiency [J].
Gustafsson, David ;
Cahuana, Jessica Chani ;
Kuylenstierna, Dan ;
Angelov, Iltcho ;
Fager, Christian .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2014, 62 (12) :3006-3016
[5]   A Wideband and Compact GaN MMIC Doherty Amplifier for Microwave Link Applications [J].
Gustafsson, David ;
Cahuana, Jessica Chani ;
Kuylenstierna, Dan ;
Angelov, Iltcho ;
Rorsman, Niklas ;
Fager, Christian .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2013, 61 (02) :922-930
[6]   The Role of Millimeter-Wave Technologies in 5G/6G Wireless Communications [J].
Hong, Wei ;
Jiang, Zhi Hao ;
Yu, Chao ;
Hou, Debin ;
Wang, Haiming ;
Guo, Chong ;
Hu, Yun ;
Kuai, Le ;
Yu, Yingrui ;
Jiang, Zhengbo ;
Chen, Zhe ;
Chen, Jixin ;
Yu, Zhiqiang ;
Zhai, Jianfeng ;
Zhang, Nianzu ;
Tian, Ling ;
Wu, Fan ;
Yang, Guangqi ;
Hao, Zhang-Cheng ;
Zhou, Jian Yi .
IEEE JOURNAL OF MICROWAVES, 2021, 1 (01) :101-122
[7]   A 28-GHz-Band GaN HEMT MMIC Doherty Power Amplifier Designed by Load Resistance Division Adjustment [J].
Ishikawa, Ryo ;
Seshimo, Takuya ;
Takayama, Yoichiro ;
Honjo, Kazuhiko .
2021 16TH EUROPEAN MICROWAVE INTEGRATED CIRCUITS CONFERENCE (EUMIC 2021), 2021, :241-244
[8]   An extended Doherty amplifier with high efficiency over a wide power range [J].
Iwamoto, M ;
Williams, A ;
Chen, PF ;
Metzger, AG ;
Larson, LE ;
Asbeck, PM .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2001, 49 (12) :2472-2479
[9]   A 24-28-GHz GaN MMIC Synchronous Doherty Power Amplifier With Enhanced Load Modulation for 5G mm-Wave Applications [J].
Liu, Rui-Jia ;
Zhu, Xiao-Wei ;
Xia, Jing ;
Zhao, Zi-Ming ;
Dong, Qin ;
Chen, Peng ;
Zhang, Lei ;
Jiang, Xin ;
Yu, Chao ;
Hong, Wei .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2022, 70 (08) :3910-3922
[10]   A Yield-Improvement Method for Millimeter-Wave GaN MMIC Power Amplifier Design Based on Load-Pull Analysis [J].
Mao, Shuman ;
Zhang, Wei ;
Yao, Yuan ;
Yu, Xuming ;
Tao, Hongqi ;
Guo, Fangjin ;
Ren, Chunjiang ;
Chen, Tangsheng ;
Zhang, Bin ;
Xu, Ruimin ;
Yan, Bo ;
Xu, Yuehang .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2021, 69 (08) :3883-3895