Using geostatistics and machine learning models to analyze the influence of soil nutrients and terrain attributes on lead prediction in forest soils

被引:2
作者
Ahado, Samuel Kudjo [1 ]
Agyeman, Prince Chapman [2 ,3 ]
Boruvka, Lubos [1 ]
Kanianska, Radoslava [4 ]
Nwaogu, Chukwudi [5 ]
机构
[1] Czech Univ Life Sci Prague, Fac Agrobiol Food & Nat Resources, Dept Soil Sci & Soil Protect, Prague 16500, Czech Republic
[2] Charles Univ Prague, Inst Environm Studies, Fac Sci, Benatska, Prague 12800, Czech Republic
[3] Charles Univ Prague, Fac Sci, SOWA RI, Benatska 2, Prague 12800, Czech Republic
[4] Matej Bel Univ Banska Bystr, Fac Nat Sci, Tajovskeho 40, Banska Bystrica 97401, Slovakia
[5] Fed Univ Technol Owerri, Sch Environm Sci, Dept Environm Management, Owerri, Nigeria
关键词
Regression kriging; Soil nutrient; Terrain attributes; Uncertainty assessment; QUANTILE REGRESSION; SPATIAL PREDICTION; GENERIC FRAMEWORK; UNCERTAINTY; STABILIZATION; VARIABILITY; VARIABLES; CUBIST; CARBON;
D O I
10.1007/s40808-023-01890-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The study aimed at investigating the possibility of predicting lead (Pb) in forest soils by combining terrain attributes and soil nutrients using geostatistics and machine learning algorithms (MLAs). The study was partitioned into three categories: predicting Pb in forest soil using terrain attributes and RK (Context 1); predicting Pb in forest soil using soil nutrients and RK (Context 2); and lastly predicting Pb in forest soils using a combination of soil nutrients, terrain attributes, and RK (Context 3). Stochastic Gradient Boosting-regression kriging (SGB-RK), cubist regression kriging (CUB_RK), quantile regression forest kriging(QRF_RK) and k nearest neighbour regression kriging (KNN_RK) were the modeling approaches used in the estimation of lead (Pb) concentration in forest soil. The results showed that combining the terrain attribute as an auxiliary dataset with QRF_RK proved to be the most effective method for predicting Pb in forest soil (context 1). The most effective method for predicting Pb in forest soil was to combine soil nutrients as an auxiliary dataset with SGB_RK (context 2). Combining cubist_RK with an ancillary dataset of soil nutrients and terrain attributes is the most effective method for predicting Pb in forest soils (context 3). In addition, combining ancillary variables such as soil nutrients and terrain attributes with cubist_RK generated the best results for estimating Pb concentration in forest soils. It was found that applying a robust digital soil mapping (DSM) model in combination with terrain attributes and soil nutrients is efficient in predicting the spatial distribution and estimation of uncertainty levels of lead (Pb) in forest soils based on the model's accuracy parameters.
引用
收藏
页码:2099 / 2112
页数:14
相关论文
共 71 条
[1]   Optimal zinc level and uncertainty quantification in agricultural soils via visible near-infrared reflectance and soil chemical properties [J].
Agyeman, Prince Chapman ;
Kebonye, Ndiye Michael ;
Khosravi, Vahid ;
Kingsley, John ;
Boruvka, Lubos ;
Vasat, Radim ;
Boateng, Charles Mario .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 326
[2]   Ecological risk source distribution, uncertainty analysis, and application of geographically weighted regression cokriging for prediction of potentially toxic elements in agricultural soils [J].
Agyeman, Prince Chapman ;
John, Kingsley ;
Kebonye, Ndiye Michael ;
Ofori, Solomon ;
Boruvka, Lubos ;
Vasat, Radim ;
Kocarek, Martin .
PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 164 :729-746
[3]   Using spectral indices and terrain attribute datasets and their combination in the prediction of cadmium content in agricultural soil [J].
Agyeman, Prince Chapman ;
Khosravi, Vahid ;
Kebonye, Ndiye Michael ;
John, Kingsley ;
Boruvka, Lubos ;
Vasat, Radim .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 198
[4]   Voting over multiple condensed nearest neighbors [J].
Alpaydin, E .
ARTIFICIAL INTELLIGENCE REVIEW, 1997, 11 (1-5) :115-132
[5]   Extrapolation of a structural equation model for digital soil mapping [J].
Angelini, M. E. ;
Kempen, B. ;
Heuvelink, G. B. M. ;
Temme, A. J. A. M. ;
Ransom, M. D. .
GEODERMA, 2020, 367
[6]   Digital soil mapping and GlobalSoilMap . Main advances and ways forward [J].
Arrouays, Dominique ;
Poggio, Laura ;
Guerrero, Osvaldo A. Salazar ;
Mulder, Vera Laetitia .
GEODERMA REGIONAL, 2020, 21
[7]   GlobalSoilMap: Toward a Fine-Resolution Global Grid of Soil Properties [J].
Arrouays, Dominique ;
Grundy, Michael G. ;
Hartemink, Alfred E. ;
Hempel, Jonathan W. ;
Heuvelink, Gerard B. M. ;
Hong, S. Young ;
Lagacherie, Philippe ;
Lelyk, Glenn ;
McBratney, Alexander B. ;
McKenzie, Neil J. ;
Mendonca-Santos, Maria D. L. ;
Minasny, Budiman ;
Montanarella, Luca ;
Odeh, Inakwu O. A. ;
Sanchez, Pedro A. ;
Thompson, James A. ;
Zhang, Gan-Lin .
ADVANCES IN AGRONOMY, VOL 125, 2014, 125 :93-+
[8]   Hyper-scale digital soil mapping and soil formation analysis [J].
Behrens, Thorsten ;
Schmidt, Karsten ;
Ramirez-Lopez, Leonardo ;
Gallant, John ;
Zhu, A-Xing ;
Scholten, Thomas .
GEODERMA, 2014, 213 :578-588
[9]   Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy [J].
Bellon-Maurel, Veronique ;
Fernandez-Ahumada, Elvira ;
Palagos, Bernard ;
Roger, Jean-Michel ;
McBratney, Alex .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2010, 29 (09) :1073-1081
[10]   A comparison of prediction methods for the creation of field-extent soil property maps [J].
Bishop, TFA ;
McBratney, AB .
GEODERMA, 2001, 103 (1-2) :149-160