Predicting the spatiotemporal characteristics of atmospheric rivers: A novel data-driven approach

被引:4
|
作者
Meghani, Samarth [1 ]
Singh, Shivam [2 ]
Kumar, Nagendra [3 ]
Goyal, Manish Kumar [2 ]
机构
[1] VIT Bhopal Univ, Sch Comp Sci & Engn, Bhopal 466114, Madhya Pradesh, India
[2] Indian Inst Technol Indore, Dept Civil Engn, Indore 453552, Madhya Pradesh, India
[3] Indian Inst Technol Indore, Dept Comp Sci & Engn, Indore 453552, Madhya Pradesh, India
关键词
Atmospheric rivers; Deep learning; Convolutional autoencoder; Floods; Integrated water vapor transport; Machine learning; EXTREME PRECIPITATION; PACIFIC-OCEAN; RESOLUTION; WEATHER;
D O I
10.1016/j.gloplacha.2023.104295
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Atmospheric Rivers (ARs) are narrow bands of high-water vapor content in the low troposphere of mid-latitude regions through which most of the poleward moisture is being transported. ARs have been represented statistically as the regions of intense vertically integrated horizontal water vapor transport (IVT) in the atmosphere. These ARs have been found positively correlated with extreme precipitation and flood events at some coastal mid-latitude regions and thus have been linked to several socioeconomic implications. The robust and accurate forecasts of AR availability at a significant lead time can be a useful tool for managing AR-associated floods and water resources. To enhance the knowledge of data-driven methods for modelling nonlinear atmospheric dynamics associated with ARs, we have explored some popular deep-learning architectures for predicting AR availability. AR availability maps derived from the statistical characterization of IVT using ERA5 reanalyses data of ECMWF from the testing dataset are taken as ground truth for the prediction. The predictions of the models have been analyzed based on popularly adopted performance evaluation metrics structural similarity index measure (SSIM), mean square error (MSE), root mean square error (RMSE), and peak signal-to-noise ratio (PSNR). Our proposed autoencoder model outperforms the conventional convolutional neural network (CNN) and Conv-LSTM model. We have got comparatively higher scores (average) of SSIM (0.739) and PSNR (64.424) as well as lower scores (average) of RMSE (0.155) and MSE (0.025) for the predictions which signify the ability of our model to learn spatiotemporal features linked with AR-dynamics.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A data-driven approach for predicting printability in metal additive manufacturing processes
    William Mycroft
    Mordechai Katzman
    Samuel Tammas-Williams
    Everth Hernandez-Nava
    George Panoutsos
    Iain Todd
    Visakan Kadirkamanathan
    Journal of Intelligent Manufacturing, 2020, 31 : 1769 - 1781
  • [42] A Data-Driven Approach for Predicting Industrial Dyeing Recipes of Polyester Fabrics
    Xie, Yutao
    Zhang, Hao
    Zhang, Shujuan
    Xiao, Shunli
    Li, Qi
    Qin, Xianan
    FIBERS AND POLYMERS, 2024, 25 (08) : 2985 - 2991
  • [43] A data-driven approach for predicting printability in metal additive manufacturing processes
    Mycroft, William
    Katzman, Mordechai
    Tammas-Williams, Samuel
    Hernandez-Nava, Everth
    Panoutsos, George
    Todd, Iain
    Kadirkamanathan, Visakan
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (07) : 1769 - 1781
  • [44] A Data-Driven Multi-Regime Approach for Predicting Energy Consumption
    Kahraman, Abdulgani
    Kantardzic, Mehmed
    Kahraman, Muhammet Mustafa
    Kotan, Muhammed
    ENERGIES, 2021, 14 (20)
  • [45] A data-driven approach to predicting diabetes and cardiovascular disease with machine learning
    Dinh, An
    Miertschin, Stacey
    Young, Amber
    Mohanty, Somya D.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2019, 19 (01)
  • [46] Novel Data-Driven Framework for Predicting Residual Strength of Corroded Pipelines
    Lu, Hongfang
    Xu, Zhao-Dong
    Iseley, Tom
    Matthews, John C.
    JOURNAL OF PIPELINE SYSTEMS ENGINEERING AND PRACTICE, 2021, 12 (04)
  • [47] A Data-Driven Approach for Predicting the Remaining Useful Life of Steam Generators
    Hoang-Phuong Nguyen
    Fauriat, William
    Zio, Enrico
    Liu, Jie
    2018 3RD INTERNATIONAL CONFERENCE ON SYSTEM RELIABILITY AND SAFETY (ICSRS), 2018, : 255 - 260
  • [48] A data-driven approach to predicting diabetes and cardiovascular disease with machine learning
    An Dinh
    Stacey Miertschin
    Amber Young
    Somya D. Mohanty
    BMC Medical Informatics and Decision Making, 19
  • [49] A Data-Driven Approach to Predicting Septic Shock in the Intensive Care Unit
    Yee, Christopher R.
    Narain, Niven R.
    Akmaev, Viatcheslav R.
    Vemulapalli, Vijetha
    BIOMEDICAL INFORMATICS INSIGHTS, 2019, 11
  • [50] Data-driven approaches for estimation of sediment discharge in rivers
    Marwan Kheimi
    Earth Science Informatics, 2024, 17 : 761 - 781