Band-to-Band Tunneling Leakage Current Characterization and Projection in Carbon Nanotube Transistors

被引:10
作者
Lin, Qing [1 ]
Gilardi, Carlo [1 ]
Su, Sheng-Kai [2 ]
Zhang, Zichen [3 ]
Chen, Edward [2 ]
Bandaru, Prabhakar [3 ]
Kummel, Andrew [3 ]
Radu, Iuliana [2 ]
Mitra, Subhasish [1 ]
Pitner, Greg [2 ]
Wong, H. -S. Philip [1 ]
机构
[1] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
[2] Taiwan Semicond Mfg Co, Corp Res, Hsinchu 30075, Taiwan
[3] Univ Calif San Diego, Dept Elect Engn, San Diego, CA 92093 USA
关键词
carbon nanotube; MOSFET; leakage current; band-to-band tunneling; band gap; supply voltage; extension doping; FIELD-EFFECT TRANSISTORS; VIRTUAL-SOURCE MODEL; PERFORMANCE; SIMULATION; FETS;
D O I
10.1021/acsnano.3c04346
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon nanotube (CNT) transistors demonstrate high mobility but also experience off-state leakage due to the small effective mass and band gap. The lower limit of off-current (I-MIN) was measured in electrostatically doped CNT metal-oxide-semiconductor field-effect transistors (MOSFETs) across a range of band gaps (0.37 to 1.19 eV), supply voltages (0.5 to 0.7 V), and extension doping levels (0.2 to 0.8 carriers/nm). A nonequilibrium Green's function (NEGF) model confirms the dependence of I-MIN on CNT band gap, supply voltage, and extension doping level. A leakage current design space across CNT band gap, supply voltage, and extension doping is projected based on the validated NEGF model for long-channel CNT MOSFETs to identify the appropriate device design choices. The optimal extension doping and CNT band gap design choice for a target off-current density are identified by including on-current projection in the leakage current design space. An extension doping level >0.5 carrier/nm is required for optimized on-current.
引用
收藏
页码:21083 / 21092
页数:10
相关论文
共 46 条
[1]   ELECTRONIC STATES OF CARBON NANOTUBES [J].
AJIKI, H ;
ANDO, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (04) :1255-1266
[2]   The N3XT Approach to Energy-Efficient Abundant-Data Computing [J].
Aly, Mohamed M. Sabry ;
Wu, Tony F. ;
Bartolo, Andrew ;
Malviya, Yash H. ;
Hwang, William ;
Hills, Gage ;
Markov, Igor ;
Wootters, Mary ;
Shulaker, Max M. ;
Wong, H-S Philip ;
Mitra, Subhasish .
PROCEEDINGS OF THE IEEE, 2019, 107 (01) :19-48
[3]  
Aly MMS, 2015, COMPUTER, V48, P24, DOI [10.1109/mc.2015.376, 10.1109/MC.2015.376]
[4]   Band-to-band tunneling in carbon nanotube field-effect transistors [J].
Appenzeller, J ;
Lin, YM ;
Knoch, J ;
Avouris, P .
PHYSICAL REVIEW LETTERS, 2004, 93 (19) :196805-1
[5]   Comparing carbon nanotube transistors - The ideal choice: A novel tunneling device design [J].
Appenzeller, J ;
Lin, YM ;
Knoch, J ;
Chen, ZH ;
Avouris, P .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2005, 52 (12) :2568-2576
[6]  
Bin Yu, 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318), P653, DOI 10.1109/IEDM.1999.824237
[7]   Carbon nanotube transistors scaled to a 40-nanometer footprint [J].
Cao, Qing ;
Tersoff, Jerry ;
Farmer, Damon B. ;
Zhu, Yu ;
Han, Shu-Jen .
SCIENCE, 2017, 356 (6345) :1369-1372
[8]  
Chen J, 2004, IEEE INTERNATIONAL ELECTRON DEVICES MEETING 2004, TECHNICAL DIGEST, P695
[9]   Coupled mode space approach for the simulation of realistic carbon nanotube field-effect transistors [J].
Fiori, Gianluca ;
Iannaccone, Giuseppe ;
Klimeck, Gerhard .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2007, 6 (04) :475-480
[10]   A three-dimensional simulation study of the performance of carbon nanotube field-effect transistors with doped reservoirs and realistic geometry [J].
Fiori, Gianluca ;
Iannaccone, Giuseppe ;
Klimeck, Gerhard .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (08) :1782-1788