Probing the Foreshock Wave Boundary With Single Spacecraft Techniques

被引:2
作者
Dorfman, S. [1 ,2 ]
Zhang, K. [1 ]
Turc, L. [3 ]
Ganse, U. [3 ]
Palmroth, M. [3 ]
机构
[1] Space Sci Inst, Boulder, CO 80301 USA
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[3] Univ Helsinki, Dept Phys, Helsinki, Finland
基金
芬兰科学院;
关键词
ion foreshock; foreshock bounday; minimum variance analysis; single-spacecraft techniques; ULF waves; COMPRESSIONAL BOUNDARY; EARTHS FORESHOCK; BOW SHOCK; IONS; FLUCTUATIONS; UPSTREAM; WIND;
D O I
10.1029/2023JA031724
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In space physics, wave measurements typically use a small number of datapoints due to limited available spacecraft. Common single-spacecraft wave vector analysis techniques built around these limitations are widely used, even in regions where the wave amplitude profile may have a strong spatial dependence. We show that in these gradient regions, the divergence-free condition of the magnetic field requires a local modification to the plane of polarization that is incorrectly interpreted by single-spacecraft techniques. We explore the consequences of this result in the Earth's ion foreshock using both Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun spacecraft data and a 2.5-D hybrid Vlasov simulation conducted using the Vlasiator code. The observed foreshock ultralow frequency waves have a finite extent in the direction perpendicular to the Interplanetary Magnetic Field, and incorrect application of standard minimum variance techniques at the boundary yields a false wave vector orientation that may be used as a novel edge detection method. This method may be particularly useful for analysis of the ion foreshock at other planets where only a single spacecraft is available. More broadly, our results stand as a cautionary tale for wave analysis in other space physics contexts where the wave geometry is less clear.
引用
收藏
页数:16
相关论文
共 60 条
[1]   Saturn's ULF wave foreshock boundary: Cassini observations [J].
Andres, N. ;
Gomez, D. O. ;
Bertucci, C. ;
Mazelle, C. ;
Dougherty, M. K. .
PLANETARY AND SPACE SCIENCE, 2013, 79-80 :64-75
[2]   The ARTEMIS Mission [J].
Angelopoulos, V. .
SPACE SCIENCE REVIEWS, 2011, 165 (1-4) :3-25
[3]  
Angelopoulos V, 2008, SPACE SCI REV, V141, P5, DOI 10.1007/s11214-008-9336-1
[4]   Size and shape of ULF waves in the terrestrial foreshock [J].
Archer, M ;
Horbury, TS ;
Lucek, EA ;
Mazelle, C ;
Balogh, A ;
Dandouras, I .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2005, 110 (A5)
[5]   The THEMIS Fluxgate Magnetometer [J].
Auster, H. U. ;
Glassmeier, K. H. ;
Magnes, W. ;
Aydogar, O. ;
Baumjohann, W. ;
Constantinescu, D. ;
Fischer, D. ;
Fornacon, K. H. ;
Georgescu, E. ;
Harvey, P. ;
Hillenmaier, O. ;
Kroth, R. ;
Ludlam, M. ;
Narita, Y. ;
Nakamura, R. ;
Okrafka, K. ;
Plaschke, F. ;
Richter, I. ;
Schwarzl, H. ;
Stoll, B. ;
Valavanoglou, A. ;
Wiedemann, M. .
SPACE SCIENCE REVIEWS, 2008, 141 (1-4) :235-264
[6]  
Battarbee Markus, 2021, Zenodo, DOI 10.5281/ZENODO.4462515
[7]   Non-locality of Earth's quasi-parallel bow shock: injection of thermal protons in a hybrid-Vlasov simulation [J].
Battarbee, Markus ;
Ganse, Urs ;
Pfau-Kempf, Yann ;
Turc, Lucile ;
Brito, Thiago ;
Grandin, Maxime ;
Koskela, Tuomas ;
Palmroth, Minna .
ANNALES GEOPHYSICAE, 2020, 38 (03) :625-643
[8]   Revised single-spacecraft method for determining wave vector <bold>k</bold> and resolving space-time ambiguity [J].
Bellan, P. M. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2016, 121 (09) :8589-8599
[9]   Global hybrid simulations: Foreshock waves and cavitons under radial interplanetary magnetic field geometry [J].
Blanco-Cano, X. ;
Omidi, N. ;
Russell, C. T. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2009, 114
[10]   REFLECTED AND DIFFUSE IONS BACKSTREAMING FROM THE EARTHS BOW SHOCK .2. ORIGIN [J].
BONIFAZI, C ;
MORENO, G .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1981, 86 (NA6) :4405-4413