Precision recruitment for high-risk participants in a COVID-19 cohort study

被引:0
作者
Mezlini, Aziz M. [1 ]
Caddigan, Eamon [1 ]
Shapiro, Allison [1 ]
Ramirez, Ernesto [1 ]
Kondow-McConaghy, Helena M. [2 ]
Yang, Justin [3 ]
DeMarco, Kerry [3 ]
Naraghi-Arani, Pejman [3 ]
Foschini, Luca [1 ]
机构
[1] Evidat Hlth Inc, 63 Bovet Rd 146, San Mateo, CA 94402 USA
[2] Oak Ridge Inst Sci & Educ, 1299 Bethel Valley Rd, Oak Ridge, TN 37830 USA
[3] US Dept Hlth & Human Serv, Biomed Adv Res & Dev Author, Off Assistant Secretary Preparedness & Response, 200 Independence Ave, Washington, DC 20201 USA
关键词
COVID-19; Clinical trials; Risk modeling;
D O I
10.1016/j.conctc.2023.101113
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background: Studies for developing diagnostics and treatments for infectious diseases usually require observing the onset of infection during the study period. However, when the infection base rate incidence is low, the cohort size required to measure an effect becomes large, and recruitment becomes costly and prolonged. We developed a model for reducing recruiting time and resources in a COVID-19 detection study by targeting recruitment to highrisk individuals. Methods: We conducted an observational longitudinal cohort study at individual sites throughout the U.S., enrolling adults who were members of an online health and research platform. Through direct and longitudinal connection with research participants, we applied machine learning techniques to compute individual risk scores from individually permissioned data about socioeconomic and behavioral data, in combination with predicted local prevalence data. The modeled risk scores were then used to target candidates for enrollment in a hypothetical COVID-19 detection study. The main outcome measure was the incidence rate of COVID-19 according to the risk model compared with incidence rates in actual vaccine trials. Results: When we used risk scores from 66,040 participants to recruit a balanced cohort of participants for a COVID-19 detection study, we obtained a 4- to 7-fold greater COVID-19 infection incidence rate compared with similar real-world study cohorts. Conclusion: This risk model offers the possibility of reducing costs, increasing the power of analyses, and shortening study periods by targeting for recruitment participants at higher risk.
引用
收藏
页数:4
相关论文
共 10 条
[1]   Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine [J].
Baden, Lindsey R. ;
El Sahly, Hana M. ;
Essink, Brandon ;
Kotloff, Karen ;
Frey, Sharon ;
Novak, Rick ;
Diemert, David ;
Spector, Stephen A. ;
Rouphael, Nadine ;
Creech, C. Buddy ;
McGettigan, John ;
Khetan, Shishir ;
Segall, Nathan ;
Solis, Joel ;
Brosz, Adam ;
Fierro, Carlos ;
Schwartz, Howard ;
Neuzil, Kathleen ;
Corey, Larry ;
Gilbert, Peter ;
Janes, Holly ;
Follmann, Dean ;
Marovich, Mary ;
Mascola, John ;
Polakowski, Laura ;
Ledgerwood, Julie ;
Graham, Barney S. ;
Bennett, Hamilton ;
Pajon, Rolando ;
Knightly, Conor ;
Leav, Brett ;
Deng, Weiping ;
Zhou, Honghong ;
Han, Shu ;
Ivarsson, Melanie ;
Miller, Jacqueline ;
Zaks, Tal .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (05) :403-416
[2]   Accelerating Research With Technology: Rapid Recruitment for a Large-Scale Web-Based Sleep Study [J].
Deering, Sean ;
Grade, Madeline M. ;
Uppal, Jaspreet K. ;
Foschini, Luca ;
Juusola, Jessie L. ;
Amdur, Adam M. ;
Stepnowsky, Carl J. .
JMIR RESEARCH PROTOCOLS, 2019, 8 (01)
[3]  
Evidation health Inc., 2022, US
[4]  
Konty K.J., 2019, Online Journal of Public Health Informatics, V11, pe249, DOI [10.5210/ojphi.v11i1.9758, DOI 10.5210/OJPHI.V11I1.9758]
[5]   LONGITUDINAL DATA FROM ACTIVITY TRACKERS SHOW THAT THOSE WITH GREATER INCONSISTENCY IN ACTIVITY LEVELS ARE MORE LIKELY TO DEVELOP MORE SEVERE DEPRESSION [J].
Kumar, S. ;
Tran, J. L. ;
Lee, W. ;
Bradshaw, B. ;
Foschini, L. ;
Juusola, J. .
VALUE IN HEALTH, 2018, 21 :S191-S191
[6]  
Park T., 2021, COVID 19 VACCINE DEV
[7]   Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine [J].
Polack, Fernando P. ;
Thomas, Stephen J. ;
Kitchin, Nicholas ;
Absalon, Judith ;
Gurtman, Alejandra ;
Lockhart, Stephen ;
Perez, John L. ;
Perez Marc, Gonzalo ;
Moreira, Edson D. ;
Zerbini, Cristiano ;
Bailey, Ruth ;
Swanson, Kena A. ;
Roychoudhury, Satrajit ;
Koury, Kenneth ;
Li, Ping ;
Kalina, Warren V. ;
Cooper, David ;
Frenck, Robert W., Jr. ;
Hammitt, Laura L. ;
Tureci, Ozlem ;
Nell, Haylene ;
Schaefer, Axel ;
Unal, Serhat ;
Tresnan, Dina B. ;
Mather, Susan ;
Dormitzer, Philip R. ;
Sahin, Ugur ;
Jansen, Kathrin U. ;
Gruber, William C. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (27) :2603-2615
[8]   Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19 [J].
Sadoff, Jerald ;
Gray, Glenda ;
Vandebosch, An ;
Cardenas, Vicky ;
Shukarev, Georgi ;
Grinsztejn, Beatriz ;
Goepfert, Paul A. ;
Truyers, Carla ;
Fennema, Hein ;
Spiessens, Bart ;
Offergeld, Kim ;
Scheper, Gert ;
Taylor, Kimberly L. ;
Robb, Merlin L. ;
Treanor, John ;
Barouch, Dan H. ;
Stoddard, Jeffrey ;
Ryser, Martin F. ;
Marovich, Mary A. ;
Neuzil, Kathleen M. ;
Corey, Lawrence ;
Cauwenberghs, Nancy ;
Tanner, Tamzin ;
Hardt, Karin ;
Ruiz-Guinazu, Javier ;
Le Gars, Mathieu ;
Schuitemaker, Hanneke ;
Van Hoof, Johan ;
Struyf, Frank ;
Douoguih, Macaya .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (23) :2187-2201
[9]   Characterizing COVID-19 and Influenza Illnesses in the Real World via Person-Generated Health Data [J].
Shapiro, Allison ;
Marinsek, Nicole ;
Clay, Ieuan ;
Bradshaw, Benjamin ;
Ramirez, Ernesto ;
Min, Jae ;
Trister, Andrew ;
Wang, Yuedong ;
Althoff, Tim ;
Foschini, Luca .
PATTERNS, 2021, 2 (01)
[10]  
U.S. Census Bureau, 2020, AG SEX COMP US 2019