Understanding the microstructure evolution characteristics and mechanical properties of an AlCoCrFeNi2.1 high entropy alloy fabricated by laser energy deposition

被引:8
|
作者
Guo, Weimin [1 ,5 ]
Zhang, Yan [2 ,3 ]
Ding, Ning [1 ]
Liu, Long [1 ]
Xu, Huixia [1 ]
Xu, Na [1 ]
Tian, Linan [1 ]
Liu, Guoqiang [2 ,3 ]
Dong, Dexiao [2 ,3 ]
Wang, Xiebin [4 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Shandong Engn Technol Ctr Mat Failure Anal & Safet, Shandong Anal & Test Ctr, Jinan 250014, Peoples R China
[2] Qilu Univ Technol, Shandong Acad Sci, Sch Mech & Automot Engn, Jinan 250353, Peoples R China
[3] Qilu Univ Technol, Shandong Inst Mech Design & Res, Shandong Acad Sci, Jinan 250031, Peoples R China
[4] Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Peoples R China
[5] Qilu Univ Technol, Shandong Acad Sci, Jinan, Peoples R China
基金
中国国家自然科学基金;
关键词
High entropy alloy; Laser energy deposition; Post deposition heat treatment; Microstructure; Mechanical property; DUCTILITY TRADE-OFF; ORDERED L1(2); STRENGTH; FCC; STABILITY; KINETICS; BEHAVIOR; DESIGN;
D O I
10.1016/j.msea.2023.144795
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In the present work, an AlCoCrFeNi2.1 high entropy alloy is fabricated by laser energy deposition. Specimens are heated to 700 degrees C (2#), 850 degrees C (3#) and 1000 degrees C (4#), respectively, held for 1 h and cooled in water to investigate the effect of heat-treating conditions on microstructure evolution and mechanical properties of the alloys. FCC(L12) + B2 dual-phase microstructure is acquired from all the four deposits. Ordered FCC (L12) disappears and transforms into B2 particles in 3# and 4#. Original B2 phase and newly formed B2 particles show K-S orientation relationship (OR) with adjacent FCC grains. Nano-sized phase m particles, which contain monoclinic lattice structure and have a composition similar with FCC phase, exist on FCC-BCC phase boundary in all the four deposits. FCC-m phase boundary is coherent. Existence of phase m in 4# indicates that it is stable at temperatures as high as 1000 degrees C. Precipitate hardening plays an important role in strengthening the materials, while the coarsening of precipitate particles weakens their strengthening effect. The high strength of this alloy group is also attributed to the two-phase interface strengthening effect. Possible reasons for the formation of m particles and their effect on the strength of the material are analyzed.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Microstructure Evolution and Mechanical Properties of Rapid Solidified AlCoCrFeNi2.1 Eutectic High Entropy Alloy
    Cao L.
    Zhu L.
    Zhang L.
    Wang H.
    Cui Y.
    Yang Y.
    Liu F.
    Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research, 2019, 33 (09): : 650 - 658
  • [2] Microstructure and Properties of Laser Surface Remelting AlCoCrFeNi2.1 High-Entropy Alloy
    Chen, Jingrun
    Zhang, Jing
    Li, Ke
    Zhuang, Dongdong
    Zang, Qianhao
    Chen, Hongmei
    Lu, Yandi
    Xu, Bo
    Zhang, Yan
    METALS, 2022, 12 (10)
  • [3] Effect of Nb on microstructure and properties of AlCoCrFeNi2.1 high entropy alloy
    Jiang, Hui
    Li, Li
    Ni, Zhiliang
    Qiao, Dongxu
    Zhang, Qiang
    Sui, Huaiming
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 290
  • [4] Microstructure and properties of AlCoCrFeNi2.1 eutectic high-entropy alloy formed by laser melting deposition (LMD)
    Liang, Zhuoheng
    Zhang, Yongzhong
    Liu, Yantao
    Zhu, Zhengwang
    Zhang, Haifeng
    MATERIALS LETTERS, 2022, 317
  • [5] Dynamic mechanical properties and microstructure evolution of AlCoCrFeNi2.1 eutectic high-entropy alloy at different temperatures
    Hu, Menglei
    Song, Kaikai
    Song, Weidong
    Journal of Alloys and Compounds, 2022, 892
  • [6] Dynamic mechanical properties and microstructure evolution of AlCoCrFeNi2.1 eutectic high-entropy alloy at different temperatures
    Hu, Menglei
    Song, Kaikai
    Song, Weidong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 892
  • [7] Microstructure evolution and mechanical properties of plasma sprayed AlCoCrFeNi2.1 eutectic high-entropy alloy coatings
    Wang, Liangquan
    Zhang, Fanyong
    Ma, Honglu
    He, Senlong
    Yin, Fuxing
    SURFACE & COATINGS TECHNOLOGY, 2023, 471
  • [8] Effect of Alloying on Microstructure and Mechanical Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy
    Tian, Xue-Yao
    Zhang, Hong-Liang
    Nong, Zhi-Sheng
    Cui, Xue
    Gu, Ze-Hao
    Liu, Teng
    Li, Hong-Mei
    Arzikulov, Eshkuvat
    MATERIALS, 2024, 17 (18)
  • [9] Microstructure and properties of AlCoCrFeNi2.1 eutectic high entropy alloy manufactured by selective laser melting
    Yu, Tao
    Zhou, Guangming
    Cheng, Yuanguang
    Hu, Fuchao
    Jiang, Tianfan
    Sun, Tao
    Shen, Yifu
    Zhou, Yiming
    Li, Junping
    OPTICS AND LASER TECHNOLOGY, 2023, 163
  • [10] Microstructure and mechanical properties of electron beam welding of AlCoCrFeNi2.1 eutectic high entropy alloy
    Li, Shuai
    Hou, Xiaotong
    Liu, Xin
    Liu, Zhongying
    Wang, Xingxing
    Wu, Tingting
    Bai, Yanchao
    Zhao, Wei
    INTERMETALLICS, 2024, 175