On augmented finite element formulations for the Navier-Stokes equations with vorticity and variable viscosity

被引:4
作者
Anaya, Veronica [1 ,2 ]
Caraballo, Ruben [1 ]
Ruiz-Baier, Ricardo [3 ,4 ,5 ]
Torres, Hector [6 ]
机构
[1] Univ Bio Bio, Dept Matemat, GIMNAP, Casilla 5 C, Concepcion, Chile
[2] Univ Concepcion, CI2MA, Concepcion, Chile
[3] Monash Univ, Sch Math, 9 Rainforest walk, Melbourne, Vic 3800, Australia
[4] Sechenov First Moscow State Med Univ, World Class Res Ctr Digital Biodesign & Personaliz, Russia, Moscow, Russia
[5] Univ Adventista Chile, Casilla 7 D, Chillan, Chile
[6] Univ Serena, Dept Matemat, La Serena, Chile
关键词
Navier-Stokes equations; Vorticity formulation; Mixed finite elements; Variable viscosity; A priori error analysis; VELOCITY-PRESSURE FORMULATION; SPECTRAL DISCRETIZATION; ERROR ANALYSIS; ROTATION FORM; SCHEME; SOLVER;
D O I
10.1016/j.camwa.2023.05.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we propose and analyse an augmented mixed finite element method for solving the Navier-Stokes equations describing the motion of incompressible fluid. The model is written in terms of velocity, vorticity, and pressure, and takes into account non-constant viscosity and no-slip boundary conditions. The weak formulation of the method includes least-squares terms that arise from the constitutive equation and the incompressibility condition. We discuss the theoretical and practical implications of using augmentation in detail. Additionally, we use fixed- point strategies to show the existence and uniqueness of continuous and discrete solutions under the assumption of sufficiently small data. The method is constructed using any compatible finite element pair for velocity and pressure, as dictated by Stokes inf-sup stability, while for vorticity, any generic discrete space of arbitrary order can be used. We establish optimal a priori error estimates and provide a set of numerical tests in 2D and 3D to illustrate the behaviour of the discretisations and verify their theoretical convergence rates. Overall, this method provides an efficient and accurate solution for simulating fluid flow in a wide range of scenarios.
引用
收藏
页码:397 / 416
页数:20
相关论文
共 48 条
[1]  
Abdelwahed M., 2020, BOUND VALUE PROBL, V2020, P167
[2]  
Adams R.A., 2003, Sobolev Spaces, Vsecond
[3]  
Alnaes M., 2015, ARCH NUMER SOFTW, V3, P100, DOI [DOI 10.11588/ANS.2015.100.20553, 10.11588/ans.2015.100.20553]
[4]   Stabilized finite element method for Navier-Stokes equations with physical boundary conditions [J].
Amara, M. ;
Capatina-Papaghiuc, D. ;
Trujillo, D. .
MATHEMATICS OF COMPUTATION, 2007, 76 (259) :1195-1217
[5]  
Amara M, 2004, MATH COMPUT, V73, P1673
[6]   Multifrontal parallel distributed symmetric and unsymmetric solvers [J].
Amestoy, PR ;
Duff, IS ;
L'Excellent, JY .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 184 (2-4) :501-520
[7]   Spectral element discretization of the vorticity, velocity and pressure formulation of the Navier-Stokes problem [J].
Amoura, K. ;
Azaieez, M. ;
Bernardi, C. ;
Chorti, N. ;
Saadi, S. .
CALCOLO, 2007, 44 (03) :165-188
[8]   Analysis and Approximation of a Vorticity-Velocity-Pressure Formulation for the Oseen Equations [J].
Anaya, V. ;
Bouharguane, A. ;
Mora, D. ;
Reales, C. ;
Ruiz-Baier, R. ;
Seloula, N. ;
Torres, H. .
JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (03) :1577-1606
[9]   Velocity-vorticity-pressure formulation for the Oseen problem with variable viscosity [J].
Anaya, Veronica ;
Caraballo, Ruben ;
Gomez-Vargas, Bryan ;
Mora, David ;
Ruiz-Baier, Ricardo .
CALCOLO, 2021, 58 (04)
[10]   Incorporating variable viscosity in vorticity-based formulations for Brinkman equations [J].
Anaya, Veronica ;
Gomez-Vargas, Bryan ;
Mora, David ;
Ruiz-Baier, Ricardo .
COMPTES RENDUS MATHEMATIQUE, 2019, 357 (06) :552-560