Ge-doped quaternary metallic oxynitrides GaZnON: The high-performance anode material for lithium-ion batteries

被引:17
作者
Ma, Fukun [1 ]
Guan, Shengjing [3 ]
Liu, Dan [1 ]
Liu, Zhimeng [1 ]
Qiu, Yongfu [4 ]
Sun, Changlong [2 ]
Wang, Yan-Jie [1 ]
机构
[1] Dongguan Univ Technol, Sch Mat Sci & Engn, New Energy & Adv Funct Mat Grp, Dongguan 523808, Guangdong, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Mat Sci & Engn, Qingdao 266042, Shandong, Peoples R China
[3] Shandong Univ Technol, Sch Chem & Chem Engn, Zibo 255049, Shandong, Peoples R China
[4] Dongguan Univ Technol, Sch Environm & Civil Engn, Dongguan 523808, Guangdong, Peoples R China
基金
中国博士后科学基金;
关键词
GaZnON; Ge doping; ex-situ analysis; Transfer kinetics; Lithium-ion battery; OXIDE-ASSISTED SYNTHESIS; ZNO NANOPARTICLES; HIGH-CAPACITY; NANOSHEETS; GRAPHENE; STORAGE; ELECTRODES; ARRAYS; WATER; PSEUDOCAPACITANCE;
D O I
10.1016/j.jallcom.2023.168777
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Although GaZnON, an anion material, is thought to be a good anode candidate for lithium-ion battery (LIB) owning to its superior chemical/structure stabilities and low volume expansions, the wide application of the pristine GaZnON is seriously hindered by the intrinsically tardy charge transfer kinetic. Herein, Ge cation doped GaZnON (Ge-GaZnON) is prepared by a simple solid state reaction method to study the heteroatomic doping regulated lithium-ion storage performance. Ge cation doping is confirmed by the combination of X-Ray Diffraction (XRD), Raman, and X-ray photoelectron spectroscopy (XPS), and so forth. After 200 cycles at 0.1 A g-1, the capacity of the Ge-GaZnON anode reaches up to 805.9 mAh g-1, much higher than the pristine GaZnON anode. Moreover, the reversible capacity is about 263.8 mAh g-1 after 1000 cycles. The Galvanostatic intermittent titration technique (GITT) and ex-situ electrochemical impedance spectroscopy (EIS) analyses reveal that Ge doping makes the lithiation/delithiation processes more stable with lower reaction resistance and faster charge transfer kinetic. The ex-situ analysis (XRD and XPS) reveals the good structural stability and reversibility of the Ge-GaZnON anode. This study provides a new oppor-tunities to design the next-generation metallic oxynitrides-based materials for lithium-ion batteries.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 57 条
[1]   Elucidating the reaction mechanism of SnF2@C nanocomposite as a high-capacity anode material for Na-ion batteries [J].
Ali, Ghulam ;
Lee, Ji-Hoon ;
Oh, Si Hyoung ;
Jung, Hun-Gi ;
Chung, Kyung Yoon .
NANO ENERGY, 2017, 42 :106-114
[2]   Three-dimensional nickel nitride (Ni3N) nanosheets: free standing and flexible electrodes for lithium ion batteries and supercapacitors [J].
Balogun, Muhammad-Sadeeq ;
Zeng, Yinxiang ;
Qiu, Weitao ;
Luo, Yang ;
Onasanya, Amos ;
Olaniyi, Titus K. ;
Tong, Yexiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (25) :9844-9849
[3]   Nanoporous carbon oxynitride and its enhanced lithium-ion storage performance [J].
Cha, Wangsoo ;
Kim, Sungho ;
Selvarajan, Premkumar ;
Lee, Jang Mee ;
Davidraj, Jefrin Marykala ;
Joseph, Stalin ;
Ramadass, Kavitha ;
Kim, In Young ;
Vinu, Ajayan .
NANO ENERGY, 2021, 82
[4]   Unlocking robust lithium storage performance in High 1T-phase purity MoS2 constructed by Mg intercalation [J].
Chen, Fuzhou ;
Sun, Changlong ;
Robertson, Stuart Jacob ;
Chen, Shengzhen ;
Zhu, Yihan ;
Shao, Minhua ;
Wang, Jiahai .
NANO ENERGY, 2022, 104
[5]   Nanostructure Engineering and Modulation of (Oxy)Nitrides for Application in Visible-Light-Driven Water Splitting [J].
Dong, Beibei ;
Cui, Junyan ;
Qi, Yu ;
Zhang, Fuxiang .
ADVANCED MATERIALS, 2021, 33 (29)
[6]   Air-Stable Porous Fe2N Encapsulated in Carbon Microboxes with High Volumetric Lithium Storage Capacity and a Long Cycle Life [J].
Dong, Yifan ;
Wang, Bingliang ;
Zhao, Kangning ;
Yu, Yanhao ;
Wang, Xudong ;
Mai, Liqiang ;
Jin, Song .
NANO LETTERS, 2017, 17 (09) :5740-5746
[7]   Intercalation pseudocapacitance of amorphous titanium dioxide@nanoporous graphene for high-rate and large-capacity energy storage [J].
Han, Jiuhui ;
Hirata, Akihiko ;
Du, Jing ;
Ito, Yoshikazu ;
Fujita, Takeshi ;
Kohara, Shinji ;
Ina, Toshiaki ;
Chen, Mingwei .
NANO ENERGY, 2018, 49 :354-362
[8]   Heterovalent oxynitride GaZnON nanowire as novel flexible anode for lithium-ion storage [J].
Han, Ying ;
Sun, Changlong ;
Gao, Kesheng ;
Ding, Shiqi ;
Miao, Zeqing ;
Zhao, Jian ;
Yang, Zijiang ;
Wu, Peng ;
Huang, Jing ;
Li, Zhenjiang ;
Meng, Alan ;
Zhang, Lei ;
Chen, P. .
ELECTROCHIMICA ACTA, 2022, 408
[9]   Synthesis of Mesoporous Co2+-Doped TiO2 Nanodisks Derived from Metal Organic Frameworks with Improved Sodium Storage Performance [J].
Hong, Zhensheng ;
Kang, Meiling ;
Chen, Xiaohui ;
Zhou, Kaiqiang ;
Huang, Zhigao ;
Wei, Mingdeng .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (37) :32071-32079
[10]   Controllable interior structure of ZnCo2O4 microspheres for high-performance lithium-ion batteries [J].
Huang, Liang ;
Waller, Gordon Henry ;
Ding, Yong ;
Chen, Dongchang ;
Ding, Dong ;
Xi, Pinxian ;
Wang, Zhong Lin ;
Liu, Meilin .
NANO ENERGY, 2015, 11 :64-70