Polymer Translocation

被引:5
作者
Lu, Lu-Wei [1 ,2 ]
Wang, Zhen-Hua [1 ]
Shi, An-Chang [3 ]
Lu, Yu-Yuan [1 ,2 ]
An, Li-Jia [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Polymer Phys & Chem, Changchun 130022, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
[3] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Polymer translocation; Knotted polymers; Translocation time; Critical flux; GLYCINE-RICH REGION; DNA EJECTION; FLEXIBLE POLYMERS; CONFINED POLYMER; NANOPORE SENSORS; CHAIN PASS; PROTEIN; DYNAMICS; FORCES; KNOTS;
D O I
10.1007/s10118-023-2975-6
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The translocation of a polymer through a pore that is much smaller than its size is a fundamental and actively researched topic in polymer physics. An understanding of the principles governing polymer translocation provides important guidance for various practical applications, such as the separation and purification of polymers, nanopore-based single-molecule deoxyribonucleic acid/ribonucleic acid(DNA/RNA) sequencing, transmembrane transport of DNA or RNA, and infection of bacterial cells by bacteriophages. The past several decades have seen great progresses on the study of polymer translocation. Here we present an overview of theoretical, experimental, and simulational stduies on polymer translocation, focusing on the roles played by several important factors, including initial polymer conformations, external fields, polymer topology and architectures, and confinement degree. We highlight the physical mechanisms of different types of polymer translocations, and the main controversies about the basic rules of translocation dynamics. We compare and contrast the behaviors of force-induced versus flow-induced translocations and the effects of unknotted versus knotted polymers. Finally, we mention several opportunities and challenges in the study of polymer translocation.
引用
收藏
页码:683 / 698
页数:16
相关论文
共 134 条
[1]   The journey of a single polymer chain to a nanopore [J].
Afrasiabian, Navid ;
Denniston, Colin .
SOFT MATTER, 2020, 16 (39) :9101-9112
[2]   Scaling exponents of forced polymer translocation through a nanopore [J].
Bhattacharya, A. ;
Morrison, W. H. ;
Luo, K. ;
Ala-Nissila, T. ;
Ying, S. -C. ;
Milchev, A. ;
Binder, K. .
EUROPEAN PHYSICAL JOURNAL E, 2009, 29 (04) :423-429
[3]   The potential and challenges of nanopore sequencing [J].
Branton, Daniel ;
Deamer, David W. ;
Marziali, Andre ;
Bayley, Hagan ;
Benner, Steven A. ;
Butler, Thomas ;
Di Ventra, Massimiliano ;
Garaj, Slaven ;
Hibbs, Andrew ;
Huang, Xiaohua ;
Jovanovich, Stevan B. ;
Krstic, Predrag S. ;
Lindsay, Stuart ;
Ling, Xinsheng Sean ;
Mastrangelo, Carlos H. ;
Meller, Amit ;
Oliver, John S. ;
Pershin, Yuriy V. ;
Ramsey, J. Michael ;
Riehn, Robert ;
Soni, Gautam V. ;
Tabard-Cossa, Vincent ;
Wanunu, Meni ;
Wiggin, Matthew ;
Schloss, Jeffery A. .
NATURE BIOTECHNOLOGY, 2008, 26 (10) :1146-1153
[4]   DYNAMICS OF CONFINED POLYMER-CHAINS [J].
BROCHARD, F ;
DEGENNES, PG .
JOURNAL OF CHEMICAL PHYSICS, 1977, 67 (01) :52-56
[5]  
BrochardWyart F, 1996, CR ACAD SCI II B, V323, P473
[6]   Three-dimensional dynamic Monte Carlo simulations of driven polymer transport through a hole in a wall [J].
Chern, SS ;
Cárdenas, AE ;
Coalson, RD .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (16) :7772-7782
[7]   Anomalous dynamics of translocation [J].
Chuang, J ;
Kantor, Y ;
Kardar, M .
PHYSICAL REVIEW E, 2002, 65 (01) :1-011802
[8]   Active Polymer Translocation through Flickering Pores [J].
Cohen, Jack A. ;
Chaudhuri, Abhishek ;
Golestanian, Ramin .
PHYSICAL REVIEW LETTERS, 2011, 107 (23)
[9]   Metastable Tight Knots in Semiflexible Chains [J].
Dai, Liang ;
Renner, C. Benjamin ;
Doyle, Patrick S. .
MACROMOLECULES, 2014, 47 (17) :6135-6140
[10]   DNA ejection from bacteriophage T5: Analysis of the kinetics and energetics [J].
de Frutos, M ;
Letellier, L ;
Raspaud, E .
BIOPHYSICAL JOURNAL, 2005, 88 (02) :1364-1370