Spatial-Temporal Complex Graph Convolution Network for Traffic Flow Prediction

被引:49
|
作者
Bao, Yinxin [1 ]
Huang, Jiashuang [1 ]
Shen, Qinqin [2 ]
Cao, Yang [1 ,2 ]
Ding, Weiping [1 ]
Shi, Zhenquan [1 ]
Shi, Quan [1 ,2 ]
机构
[1] Nantong Univ, Sch Informat Sci & Technol, Nantong, Peoples R China
[2] Nantong Univ, Sch Transportat & Civil Engn, Nantong, Peoples R China
基金
中国国家自然科学基金;
关键词
Traffic flow prediction; Spatial-temporal features; LSTM; Graph convolution; 3D convolution; SPATIOTEMPORAL DATA; NEURAL-NETWORK; BIG DATA; OPTIMIZATION; CNN;
D O I
10.1016/j.engappai.2023.106044
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic flow prediction remains an ongoing hot topic in the field of Intelligent Transportation System. The state-of-the-art traffic flow prediction models can effectively extract both spatial and temporal features of traffic flow data, but ignore the correlation and external interference between traffic nodes. To this end, this paper proposes a novel method based on Spatial-Temporal Complex Graph Convolution Network (ST-CGCN) for traffic flow prediction. Specifically, we first constructs the distance matrix, the data correlation matrix, and the comfort measurement matrix according to the geographical locations, the historical data record, and the external interference between traffic nodes. Then, these three matrices are fused into a complex correlation matrix by introducing self-learning dynamic weights to improve the joint modeling ability of spatial-temporal features and external factors. Next, a spatial feature extraction module and a temporal feature extraction module are designed to characterize dynamic spatial-temporal features. The spatial feature extraction module consists of a graph convolution operator with a proposed complex correlation matrix and a residual unit. The temporal feature extraction module consists of a 3D convolution operator and a Long Short-Term Memory (LSTM). Experiments constructed on five real-world datasets demonstrate that the new proposed ST-CGCN is more effective than several existing deep learning based traffic flow prediction models. The key source code and data are available at https://github.com/Bounger2/ST-CGCN.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Spatial-Temporal Attention Graph Convolution Network on Edge Cloud for Traffic Flow Prediction
    Lai, Qifeng
    Tian, Jinyu
    Wang, Wei
    Hu, Xiping
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (04) : 4565 - 4576
  • [2] STHSGCN: Spatial-temporal heterogeneous and synchronous graph convolution network for traffic flow prediction
    Yu, Xian
    Bao, Yin-Xin
    Shi, Quan
    HELIYON, 2023, 9 (09)
  • [3] Dual Dynamic Spatial-Temporal Graph Convolution Network for Traffic Prediction
    Sun, Yanfeng
    Jiang, Xiangheng
    Hu, Yongli
    Duan, Fuqing
    Guo, Kan
    Wang, Boyue
    Gao, Junbin
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 23680 - 23693
  • [4] An improved dynamic Chebyshev graph convolution network for traffic flow prediction with spatial-temporal attention
    Lyuchao Liao
    Zhiyuan Hu
    Yuxin Zheng
    Shuoben Bi
    Fumin Zou
    Huai Qiu
    Maolin Zhang
    Applied Intelligence, 2022, 52 : 16104 - 16116
  • [5] An improved dynamic Chebyshev graph convolution network for traffic flow prediction with spatial-temporal attention
    Liao, Lyuchao
    Hu, Zhiyuan
    Zheng, Yuxin
    Bi, Shuoben
    Zou, Fumin
    Qiu, Huai
    Zhang, Maolin
    APPLIED INTELLIGENCE, 2022, 52 (14) : 16104 - 16116
  • [6] Spatial-temporal graph convolution network model with traffic fundamental diagram information informed for network traffic flow prediction
    Liu, Zhao
    Ding, Fan
    Dai, Yunqi
    Li, Linchao
    Chen, Tianyi
    Tan, Huachun
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [7] Attention Mechanism Based Spatial-Temporal Graph Convolution Network for Traffic Prediction
    Xiao, Wenjuan
    Wang, Xiaoming
    Journal of Computers (Taiwan), 2024, 35 (04) : 93 - 108
  • [8] A New Perspective on Traffic Flow Prediction: A Graph Spatial-Temporal Network with Complex Network Information
    Hu, Zhiqiu
    Shao, Fengjing
    Sun, Rencheng
    ELECTRONICS, 2022, 11 (15)
  • [9] Spatial-Temporal Traffic Flow Prediction With Fusion Graph Convolution Network and Enhanced Gated Recurrent Units
    Cai, Chuang
    Qu, Zhijian
    Ma, Liqun
    Yu, Lianfei
    Liu, Wenbo
    Ren, Chongguang
    IEEE ACCESS, 2024, 12 : 56477 - 56491
  • [10] Spatial-temporal graph neural network based on gated convolution and topological attention for traffic flow prediction
    Bai, Dewei
    Xia, Dawen
    Huang, Dan
    Hu, Yang
    Li, Yantao
    Li, Huaqing
    APPLIED INTELLIGENCE, 2023, 53 (24) : 30843 - 30864