Novel DNA-based polysulfide sieves incorporated with MOF providing excellent 3D Li+ pathway for high-performance lithium-sulfur batteries

被引:5
作者
Li, Man [1 ]
Song, Seunghyun [1 ]
Li, Yang [1 ]
Chu, Mengmeng [1 ]
Chen, Tao [2 ]
Lee, Churl Seung [3 ]
Bae, Joonho [1 ]
机构
[1] Gachon Univ, Dept Phys, Seongnam Si 13120, Gyeonggi Do, South Korea
[2] Changzhou Vocat Inst Ind Technol, Sch Mat Engn, 28 Mingxin Middle Rd, Changzhou, Jiangsu, Peoples R China
[3] Korea Elect Technol Inst KETI, Nano Convergence Technol Res Ctr, Seongnam Si 13509, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
Deoxyribonucleic acid; Metal organic frameworks; Double-layer interlayer; Polysulfide-blocking; Li-ion transport; Lithium-sulfur battery; METAL-ORGANIC FRAMEWORKS; CARBON NANOTUBES; SUPERCAPACITOR; ADSORPTION; ELECTROLYTE; SURFACES; SULFIDE; DENSITY; GROWTH;
D O I
10.1016/j.apsusc.2022.156163
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
For enhancing the performance of lithium-sulfur batteries (LSBs), deoxyribonucleic acid (DNA) as a biomacromolecular adsorbing agent was incorporated into metal-organic frameworks (MOFs) to fabricate a MOF/carbon nanotube (CNT)@DNA double interlayer (MCDDI). Simulation calculations show that the adsorption energy (Ea) increased in the order of CNT-Li2S8 (-0.051 eV) < DNA(=N)-Li2S8 (-1.095 eV) < DNA (-P--O)-Li2S8 (-1.137 eV), confirming that DNA-functionalized conductive CNT (CNT@DNA) layer facing the cathode with abundant anchoring sites can block and inhibit the shuttle effect of lithium polysulfides. The MOF layer on the surface of the CNT@DNA layer provides 3D pathways to realize fast Li-ion transport and homogeneous Li deposition for inhibition of voltage polarization and dendritic Li growth. LSBs using the MCDDI exhibited a high specific capacity of 1126 mAh/g and stable cycling performance with a small capacity decay (851 mAh/g after 100 cycles) at 0.5C. A small polarization effect (Delta E = 0.33 V at 2C) is observed from the excellent rate performance. In addition, owing to the homogenous Li-ion fluxes, a high Li+ transference number (tLi+ = 0.62) and stable Li plating/stripping for a long cycle life (500 h, 1000 cycles) were achieved without Li dendrites.
引用
收藏
页数:10
相关论文
共 67 条
[1]   High-Power Li-Metal Anode Enabled by Metal-Organic Framework Modified Electrolyte [J].
Bai, Songyan ;
Sun, Yang ;
Yi, Jin ;
He, Yibo ;
Qiao, Yu ;
Zhou, Haoshen .
JOULE, 2018, 2 (10) :2117-2132
[2]   THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS [J].
BARRETT, EP ;
JOYNER, LG ;
HALENDA, PP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) :373-380
[3]   Fabricating better metal-organic frameworks separators for Li-S batteries: Pore sizes effects inspired channel modification strategy [J].
Chang, Zhi ;
Qiao, Yu ;
Wang, Jie ;
Deng, Han ;
He, Ping ;
Zhou, Haoshen .
ENERGY STORAGE MATERIALS, 2020, 25 :164-171
[4]   Chemical Adsorption and Physical Confinement of Polysulfides with the Janus-faced Interlayer for High-performance Lithium-Sulfur Batteries [J].
Chiochan, Poramane ;
Kaewruang, Siriroong ;
Phattharasupakun, Nutthaphon ;
Wutthiprom, Juthaporn ;
Maihom, Thana ;
Limtrakul, Jumras ;
Nagarkar, Sanjog ;
Horike, Satoshi ;
Sawangphruk, Montree .
SCIENTIFIC REPORTS, 2017, 7
[5]   Uniformly Controlled Treble Boundary Using Enriched Adsorption Sites and Accelerated Catalyst Cathode for Robust Lithium-Sulfur Batteries [J].
Chu, Rongrong ;
Thanh Tuan Nguyen ;
Bai, Yanqun ;
Kim, Nam Hoon ;
Lee, Joong Hee .
ADVANCED ENERGY MATERIALS, 2022, 12 (09)
[6]   A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n [J].
Chui, SSY ;
Lo, SMF ;
Charmant, JPH ;
Orpen, AG ;
Williams, ID .
SCIENCE, 1999, 283 (5405) :1148-1150
[7]   First principles methods using CASTEP [J].
Clark, SJ ;
Segall, MD ;
Pickard, CJ ;
Hasnip, PJ ;
Probert, MJ ;
Refson, K ;
Payne, MC .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (5-6) :567-570
[8]   Analysis of Polysulfide Dissolved in Electrolyte in Discharge-Charge Process of Li-S Battery [J].
Diao, Yan ;
Xie, Kai ;
Xiong, Shizhao ;
Hong, Xiaobin .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (04) :A421-A425
[9]   Microwave Synthesis of SnWO4 Nanoassemblies on DNA Scaffold: A Novel Material for High Performance Supercapacitor and as Catalyst for Butanol Oxidation [J].
Ede, Sivasankara Rao ;
Kundu, Subrata .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2015, 3 (09) :2321-2336
[10]  
Ediati R., 2019, Rasayan Journal of Chemistry, DOI [10.31788/RJC.2019.1231968, DOI 10.31788/RJC.2019.1231968]