The efficient absorption of electromagnetic waves by tunable N-doped carbon

被引:51
|
作者
Cheng, Yan [1 ]
Ma, Yongzhen [1 ]
Dang, Zhener [1 ]
Hu, Renrui [1 ]
Liu, Chenjiao [1 ]
Chen, Mi [1 ]
Gao, Lei [1 ]
Lin, Ying [1 ]
Wang, Tong [1 ]
Chen, Guanjun [1 ]
Yang, Haibo [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Key Lab Green Preparat & Functionalizat Inorgan Ma, Xian 710021, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Hollow; Multi-cavity mesoporous; Carbon microsphere; Microwave absorption; MICROWAVE-ABSORPTION; HOLLOW MICROSPHERES; PERFORMANCE; BAND; SPHERES; SHELL; NANOPARTICLES; COMPOSITES; ULTRALIGHT; FRAMEWORK;
D O I
10.1016/j.carbon.2022.10.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Porous carbon microspheres have been acknowledged as one kind of effective microwave absorption materials, but simple-and volume-produce still remains a big challenge. In this work, we developed a facile template-free and one-step approach to construct unique multi-cavity mesoporous carbon microspheres for enhanced micro-wave absorption. The production of multi-cavity pores is induced by the selective etching effect of acetone to the phenolic resin oligomers, which is much simplified and easy operated compared with traditional soft/hard template method. Further, the quantity of mesopores can be effectively regulated through controlling the addition of acetone. It is demonstrated the porous structure plays a significant role on dielectric and absorption capability. The carbon microsphere with appropriate mesoporous structure (60 mL of acetone etching) presents attractive absorption performance with strong reflection loss (RL) intensity of-44.5 dB and wide effective absorption bandwidth (EAB) of 4.72 GHz at only thickness of 1.6 mm. The relationship between porous structure and performance and absorption mechanism are also investigated in detail. This work may pave a new way for punching pores in carbon microspheres and implement corresponding potential application in solving microwave interference issue.
引用
收藏
页码:1115 / 1125
页数:11
相关论文
共 50 条
  • [41] Controlling the heterogeneous interfaces of Fe3O4/N-doped porous carbon via facile swelling for enhancing the electromagnetic wave absorption
    Ren, Lianggui
    Wang, Yiqun
    Jia, Zirui
    He, Qinchuan
    Wu, Guanglei
    COMPOSITES COMMUNICATIONS, 2022, 29
  • [42] Core-shell Ni3Sn2 @C particles anchored on 3D N-doped porous carbon skeleton for modulated electromagnetic wave absorption
    Zhang, Hongxia
    Sun, Kaige
    Sun, Kangkang
    Chen, Lei
    Wu, Guanglei
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 158 : 242 - 252
  • [43] N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption
    He, Jun
    Gao, Shengtao
    Zhang, Yuanchun
    Zhang, Xingzhao
    Li, Hanxu
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 104 : 98 - 108
  • [44] Co Nanoparticles Embedded in N-Doped Carbon Nanotubes for Broadband Microwave Absorption
    Xu, Suqiong
    Liao, Peng
    Zhu, Jiawei
    Ling, Wei
    Zhang, Xianke
    Yuan, Jujun
    Rong, Chuicai
    Liu, Xiaoqing
    Xiong, Zuzhou
    ACS APPLIED NANO MATERIALS, 2024, 7 (08) : 8671 - 8684
  • [45] Insight to the enhanced microwave absorption of porous N-doped carbon driven by ZIF-8: Competition between graphitization and porosity
    Zhou, You
    Wang, Hongpeng
    Wang, Dan
    Yang, Xianfeng
    Xing, Hongna
    Feng, Juan
    Zong, Yan
    Zhu, Xiuhong
    Li, Xinghua
    Zheng, Xinliang
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2023, 30 (03) : 474 - 484
  • [46] Improving the electromagnetic wave absorption properties of zinc ferrite-containing N-doped carbon composites by the introduction of Fe4N
    Ge, Yaqing
    Waterhouse, Geoffrey I. N.
    Sui, Jing
    Zhang, Zhiming
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 900
  • [47] Metal organic framework-derived CoZn alloy/N-doped porous carbon nanocomposites: tunable surface area and electromagnetic wave absorption properties
    Feng, Wei
    Wang, Yaming
    Chen, Junchen
    Li, Baoqiang
    Guo, Lixin
    Ouyang, Jiahu
    Jia, Dechang
    Zhou, Yu
    JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (01) : 10 - 18
  • [48] Synthesis of N-doped carbon with embedded Fe/Fe3C particles for microwave absorption
    Niu, Yingchun
    Li, Xueai
    Dong, Wenqi
    Zhang, Can
    Zhao, Kuihu
    Wang, Fengyan
    Wang, Haiyan
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (26) : 11970 - 11983
  • [49] High-performance electromagnetic wave absorption of NiCoFe/N-doped carbon composites with a Prussian blue analog (PBA) core at 2-18 GHz
    Wang, Yanjian
    Pang, Zhibin
    Xu, Hao
    Li, Cuiping
    Zhou, Wenjun
    Jiang, Xiaohui
    Yu, Liangmin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 620 : 107 - 118
  • [50] Grafting thin N-doped carbon nanotubes on hollow N-doped carbon nanoplates encapsulated with ultrasmall cobalt particles for microwave absorption
    Li, Bei
    Xu, Jia
    Xu, Hongyi
    Yan, Feng
    Zhang, Xiao
    Zhu, Chunling
    Zhang, Xitian
    Chen, Yujin
    CHEMICAL ENGINEERING JOURNAL, 2022, 435