An analysis framework to evaluate irrigation decisions using short-term ensemble weather forecasts

被引:11
|
作者
Guo, Danlu [1 ]
Wang, Quan J. [1 ]
Ryu, Dongryeol [1 ]
Yang, Qichun [1 ]
Moller, Peter [2 ]
Western, Andrew W. [1 ]
机构
[1] Univ Melbourne, Dept Infrastruct Engn, Parkville, Vic, Australia
[2] Rubicon Water, Hawthorn East, Vic, Australia
基金
澳大利亚研究理事会;
关键词
CROP MODEL PREDICTIONS; UNCERTAINTY; SIMULATION; TIME; PRECIPITATION; CALIBRATION; SYSTEMS;
D O I
10.1007/s00271-022-00807-w
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Irrigation water is an expensive and limited resource and optimal scheduling can boost water efficiency. Scheduling decisions often need to be made several days prior to an irrigation event, so a key aspect of irrigation scheduling is the accurate prediction of crop water use and soil water status ahead of time. This prediction relies on several key inputs including initial soil water status, crop conditions and weather. Since each input is subject to uncertainty, it is important to understand how these uncertainties impact soil water prediction and subsequent irrigation scheduling decisions. This study aims to develop an uncertainty-based analysis framework for evaluating irrigation scheduling decisions under uncertainty, with a focus on the uncertainty arising from short-term rainfall forecasts. To achieve this, a biophysical process-based crop model, APSIM (The Agricultural Production Systems sIMulator), was used to simulate root-zone soil water content for a study field in south-eastern Australia. Through the simulation, we evaluated different irrigation scheduling decisions using ensemble short-term rainfall forecasts. This modelling produced an ensemble of simulations of soil water content, as well as ensemble simulations of irrigation runoff and drainage. This enabled quantification of risks of over- and under-irrigation. These ensemble estimates were interpreted to inform the timing of the next irrigation event to minimize both the risks of stressing the crop and/or wasting water under uncertain future weather. With extension to include other sources of uncertainty (e.g., evapotranspiration forecasts, crop coefficient), we plan to build a comprehensive uncertainty framework to support on-farm irrigation decision-making.
引用
收藏
页码:155 / 171
页数:17
相关论文
共 50 条
  • [41] Feasibility analysis of using short-term rainfall time series to evaluate rainwater harvesting systems considering climate change
    Chen, Weilun
    Liu, Zhonghui
    Wei, Xindong
    He, Shilong
    Gao, Weijun
    Wang, Xiaodong
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 951
  • [42] A Framework of Using Machine Learning Approaches for Short-Term Solar Power Forecasting
    Munawar, Usman
    Wang, Zhanle
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2020, 15 (02) : 561 - 569
  • [43] Analysis of short-term polarization stability using Allan variance
    Vidal, Borja
    OPTICS EXPRESS, 2024, 32 (10): : 17260 - 17273
  • [44] Enhanced ensemble structures using wavelet neural networks applied to short-term load forecasting
    Ribeiro, Gabriel Trierweiler
    Mariani, Viviana Cocco
    Coelho, Leandro dos Santos
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2019, 82 : 272 - 281
  • [45] Daily Runoff Forecasting Using Ensemble Empirical Mode Decomposition and Long Short-Term Memory
    Yuan, Ruifang
    Cai, Siyu
    Liao, Weihong
    Lei, Xiaohui
    Zhang, Yunhui
    Yin, Zhaokai
    Ding, Gongbo
    Wang, Jia
    Xu, Yi
    FRONTIERS IN EARTH SCIENCE, 2021, 9
  • [46] Short-Term Ensemble Streamflow Prediction Using Spatially Shifted QPF Informed by Displacement Errors
    Hugeback, Kyle K.
    Franz, Kristie J.
    Gallus Jr, William A.
    JOURNAL OF HYDROMETEOROLOGY, 2023, 24 (01) : 21 - 34
  • [47] Very Short-term Prediction of Weather Radar-Based Rainfall Distribution and Intensity Over the Korean Peninsula Using Convolutional Long Short-Term Memory Network
    Kim, Yeonjun
    Hong, Sungwook
    ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES, 2022, 58 (04) : 489 - 506
  • [48] Trading wind generation from short-term Probabilistic forecasts of wind power
    Pinson, Pierre
    Chevallier, Christophe
    Kariniotakis, George N.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2007, 22 (03) : 1148 - 1156
  • [49] From Probabilistic Forecasts to Statistical Scenarios of Short-term Wind Power Production
    Pinson, Pierre
    Madsen, Henrik
    Nielsen, Henrik Aa.
    Papaefthymiou, George
    Kloeckl, Bernd
    WIND ENERGY, 2009, 12 (01) : 51 - 62
  • [50] GFS model-based short-term fire weather forecasting
    Glagolev, Vladimir A.
    Zubareva, Anna M.
    24TH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS: ATMOSPHERIC PHYSICS, 2018, 10833